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Executive Summary 

A field experiment was conducted in 2007 during which a tracer gas was released 
into the atmosphere and its dispersal was tracked on a dense grid of samplers.  The goal 
of this field trial was to provide information to further the development of source term 
estimation (STE) algorithms capable of predicting release location and characteristics 
(e.g., time of release and amount of material released).  After the field trial, several 
algorithm developers participated in an exercise in which they provided protocol-
controlled – and hence comparable – predictions of the release source characteristics 
based on select data collected during the experiment.  The goal of this document is to 
describe the results of our assessments and to compare these algorithms based on their 
protocol-controlled predictions.  This analysis is meant to help the Department of 
Defense (DoD) identify the current state of STE algorithm development (identify the 
“state of the art”), and it provides specific and constructive feedback to participating STE 
developers. 

In September 2007 at the U.S. Army’s Dugway Proving Ground, a short-range 
atmospheric dispersion field experiment called the Fusing Sensor Information from 
Observing Networks (FUSION) Field Trial 2007 (FFT 07) was conducted.  FFT 07 was 
designed to collect information to support the development of prototype STE algorithms 
to back-predict the source(s) of a hazardous materials release when given detection data 
from sensors and local meteorological conditions.  A total of 82 trials, involving a mix of 
instantaneous and continuous releases from up to four simultaneous sources of a neutrally 
buoyant tracer gas (propylene), were conducted over a period of 2½ weeks.  These 
releases occurred during both daytime and at night.  The tracer gas was sampled on a 
dense regular grid of samplers approximately 450 meters by 450 meters.  

A comparative investigation of STE algorithms based on this field experiment 
began in 2008.  Participating algorithm developers were asked to predict the source of a 
tracer gas release based on limited information from the tracer measurements and local 
meteorological conditions.  Depending on the individual algorithms’ capabilities, they 
were tasked to predict the location of the sources of the release, the number of sources, 
the mass of each source, and the timing of the release from each source. 

The general method of this investigation was first to provide participating 
developers with a subset of sensor data that was collected during selected FFT 07  
releases – individual cases were constructed from the subset of FFT 07 releases for which 
source term predictions were sought.  However, they were not provided with any 
information (e.g., time, location, or mass) on the actual source release that they were 
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asked to predict – that is, these were “blind” predictions.  Since a partial set of the 
original field trial data (including source term information) was released to participants to 
help develop algorithms, some tracer and meteorological data were concealed so that 
algorithm developers would not be able to easily determine which physical FFT 07 
release was used to create a particular case.   

Next, algorithm developers provided “blind” predictions that could then be 
compared to parameters of the actual release.  This investigation consisted of 104 
individual cases of sensor data that were distributed in September 2008.  These cases 
provided high-resolution, continuous streams of concentration data for ingestion by STE 
algorithms.  The complexity and degree of the information provided in individual cases 
were varied in that the algorithms were sometimes asked to predict cases in which:  

• The meteorology was relatively well-characterized and detection data were 
available from a relatively large number of chemical sensors in order to charac-
terize STE algorithm performance under optimistic conditions. 

• The meteorological data and number of available sensors were more limited in 
order to characterize STE algorithm performance under less ideal, but perhaps 
more realistic, conditions.   

A total of 8 STE algorithm developers participated in this investigation providing a 
total of 14 full and partial sets of predictions.  Some developers provided multiple 
predictions based on different algorithms under development.  We particularly note that 
not all developers submitted predictions for all 104 cases.  Some algorithms were not 
capable of predicting certain types of releases that were considered (e.g., instantaneous or 
continuous).1  Some model developers selectively limited their predictions to cases when 
a relatively large number of sensors (e.g., 16) were provided, or, because of funding and 
timing constraints, limited their set of predictions to either the first “53” or some “semi-
random” subset of cases.  

The goal of these evaluations was not to declare a “winning” algorithm, but rather to 
assess the state of the art in the area of source term estimation and provide constructive 
feedback to the developers.  Therefore, we started our analysis by evaluating algorithm 
performance trends instead of analyzing each individual algorithm.  We did not attempt 
to determine whether the predictions were “good enough” for a particular operational use.  
Two separate methodologies were pursued: (1) comparison of selected top-level 
algorithm performance metrics under a variety of conditions and among algorithms and 
(2) application of linear regression techniques to discern trends among different 
algorithms.  Two top-level performance metrics were constructed to compare STE 
algorithm performance.  For each individual case predicted by an STE algorithm, two 

                                                           

1 In this case, algorithm developers tried to selectively prescreen tracer information to ascertain whether a 
particular release fell within a selected class. 
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measures were calculated: (1) the distance between the average predicted and the average 
observed location of the source(s) that we refer to as “miss distance”2 and (2) the ratio of 
the total predicted mass to the total released mass from all sources that we refer to as 
“mass ratio.”  

The following figure shows results of these calculations for “miss distance” at three 
levels of interest.  For each set of STE predictions, the grouped bars denote the fraction of 
predictions that are less than the particular level of interest.  With respect to our miss 
distance metric, all algorithms were able to predict “averaged” source term locations to 
within 500 meters (i.e., a size comparable to the size of the tracer measurement grid of 
the FFT 07 experiment), and a wide variation in the quality of the algorithm predictions 
was seen when the miss distance was on the order of tens of meters (i.e., less than 100 
meters).  Few algorithms are able to consistently predict the source of a release with an 
accuracy of more than a few hundred meters.  We note that the FFT 07 sensor grid was 
less than approximately 500 meters across and that the release sources were less than 100 
meters away from the leading edge of the sensor grid. 

 

 
Horizontal lines correspond to medians of fractions for all algorithms and at various thresholds: 0.46 (blue line) for 
the fraction of miss distances less than 100 meters, 0.79 (brown line) for the fraction of miss distances less than 
250 meters, and 0.94 (green line) for the fraction of miss distances less than 500 meters.  Therefore, these lines 
separate the algorithms into better and worse performing halves, as measured by the given metric calculated over 
all cases for each algorithm. 

Algorithm Inter-Comparison Using Averaged Miss Distance Fraction of Cases 
below 100, 200, and 500 meters 

                                                           

2 The distance between the predicted and observed location for an individual source can be larger or 
smaller than the miss distance metric value that corresponds to an average difference when more than 
one location is involved in the release or prediction. 
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With respect to predicting release mass, algorithm performance varied widely.  For 
each set of predictions, the following figure shows the fractions of cases in which 
observed and predicted masses were within factors of 2, 5, and 10 of each other.  About 
half of the models were able to predict total mass of the source to within a factor of 10 for 
about three-quarters of the cases.  When the prediction standard quality was raised to 
within a factor of 2, about half of the algorithms had this level of accuracy for less than 
one-third of the cases.  Most evaluated STE algorithms did not consistently predict total 
mass to within a factor of 5.  We caution that these results capture global algorithm 
performance without any effort to ensure that compared predictions are compatible with 
each other.  For instance, as noted earlier, these results do not take into account that some 
algorithms provided only partial predictions (i.e., not a complete set of predictions for all 
cases), and some algorithm developers picked preferred sets of predictions to submit. 

 

 
Thick colored lines correspond to the medians of the fractions for all of the algorithms and at the various thresh-
olds: 0.34 (brown line) for factor of 2, 0.62 (green line) for factor of 5, and 0.77 (blue line) for factor of 10. 

Algorithm Inter-Comparison Using Observed and Predicted Mass Fractions  
within Factors of 2, 5, and 10 of Each Other 

 

Our analyses that applied linear regression techniques indicated that the time of the 
release (night versus day), type of meteorology provided (detailed versus sparse 
“operational”), and the number of simulated sensors (4 versus 16) did not lead to 
significant differences in prediction quality for most of the STE algorithms under 
evaluation.  At first glance, these results seem to be counterintuitive.  For instance, one 
expects that quadrupling the number of sensors from 4 to 16, or using high-frequency 
close-in meteorology, should necessarily lead to better predictions.  Also, time of release 
should, in general, be strongly correlated with the atmospheric stability and this should 
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significantly affect atmospheric dispersion and could be hypothesized to affect (and 
perhaps differentially affect) STE algorithm performance.  Thus, it is, at least at first 
glance, unexpected that the STE algorithms are capable of predicting source term 
parameters with equal skill under stable and unstable atmospheric conditions, or without 
regard to the number of sensors providing information on the tracer gas or the expected 
quality of the meteorological information.  We hypothesize that the relatively small 
spatial scale of the FFT 07 sensor grid (approximately 450 by 450 meters), and the 
proximity of the release locations, both to each other and to the upwind leading edge of 
the sensor grid, might be responsible for these findings.  For instance, for most single-
source releases, the cross-wind extent of the plume does not cover more than a few 
neighboring sensors, and no significant spatial variation occurs in the plume over the 
sensor grid as the downwind distance from the release location increases.  Thus, changing 
the number of simulated sensors from 4 to 16 might not provide enough additional 
information for the STE algorithms. 

In addition, linear regression analysis indicated that the number of sources and the 
type of release [continuous release versus single realization of instantaneous puff(s) 
versus multiple realizations of instantaneous puff(s)] are significant variables in terms of 
predicting algorithm performance for most participating algorithms.  We note that 
regression analysis itself (as we used it) does not quantify the quality of the algorithms’ 
ability to predict source term parameters – it only indicates which release factors have an 
effect on the quality of the STE predictions. 

Our most significant observations and recommendations from these investigations 
are described below: 

• Source term estimation, as envisioned for chemical and biological weapon 
attacks, remains a challenge.  An initial look at state-of-the-art STE algorithms 
participating in this exercise revealed shortcomings with respect to estimating 
spatial location and mass of the release.  Although most STE algorithms were 
capable of estimating release location on a scale comparable to the limited size 
of the sensor grid used in FFT 07, and noting that the releases were very close to 
the upwind edge of the sensor grid, questions remain as to how well these algo-
rithms would perform in operationally relevant scenarios that would undoubt-
edly include sensors spaced farther apart from each other and the release loca-
tion.3   

                                                           

3  One could conceive of an STE algorithm that places the source at the location of the first sensor that de-
tects the release.  This type of algorithm would be consistent with placing an Allied Tactical Publication-
45 (ATP-45) warning triangle at the sensor that registers first detection.  Given the limitations associated 
with the FFT 07 field experiment (especially the scale), such an algorithm would perform quite compa-
rably to the more complex STE algorithms that were investigated. 
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• The FFT 07 field trials appear to have limited applicability to practical vali-
dation of STE algorithms.  FFT 07 is the most comprehensive field experiment 
conducted to provide information to further the development and assessment of 
STE algorithms – certainly a valuable and necessary source of measurements 
and observations for this goal of improving the state of the art.4  However, the 
relatively small size of the sensor grid and the closeness of the release locations 
to the upwind leading edge of the sensor grid, limit the usefulness of FFT 07 as 
the basis for future validation of an STE algorithm for militarily relevant sce-
narios.  Moreover, our analysis revealed that certain input variations for the STE 
algorithms (such as quadrupling the number of available sensors or providing 
detailed high-resolution meteorology near the center of the sensor grid) did not 
lead to expected discernible improvements in the quality of STE predictions.  
This suggests that the small scale of FFT 07 – a few hundred meters – limited its 
usefulness for evaluations of even fundamental STE algorithm performance at 
larger (and for many applications, more realistic) scales where atmospheric sta-
bility, the quality of meteorological inputs, and the amount of available sensor 
(i.e., “detector”) information can reasonably be hypothesized to influence STE 
algorithm performance. 

• A relatively high-fidelity, virtual, simulated environment could be useful for 
future assessments and independent validation activities of STE algorithms.  
This recommendation rests on the premise that a relatively large-scale, realistic 
field trial is unaffordable (and possibly not executable in any case).  As compu-
tational power becomes more available and relatively cheap, the potential exists 
to use computer modeling tools to supplement field testing of system compo-
nents.  The use of such tools holds the promise of increasing the efficiency of 
the conducted field tests, aiding the evaluation of results obtained from such 
tests, and reducing costs.  We recommend that simulated environments such as 
the National Center for Atmospheric Research Virtual THreat Response Emula-
tion and Analysis Testbed modeling system should be considered and take cen-
ter stage to supplement and extend field trial data.  Furthermore, if future as-
sessment and validation efforts of STE modules will largely rely on simulated 
environments, future laboratory measurements or field trial designs and obser-
vations must take this into account.  That is, we recommend a holistic approach 
to designing the strategy by which simulated environments and field trials (or 
laboratory tests) are used to further the assessment and validation of STE mod-

                                                           

4 The provided FFT 07 data were valuable to algorithm developers, especially in terms of refining their 
expectations.  For instance, several prototype algorithms did not expect that (1) some sensors would 
have “noise” floors (i.e., they register some “signals” even when no tracer gas was present), and (2) dif-
ferent sensors have differing levels of noise.  That necessitated some developers to implement new 
threshold algorithms before supplying the provided data to their algorithms.  
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ules.  Such an approach should ensure future activities are complementary and 
should especially seek synergistic activities (e.g., field trial or laboratory obser-
vations that support increased confidence in aspects of the virtual environment 
that are critical to its use when applied to STE algorithm assessment and valida-
tion). 
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Comparative Investigation of Source Term 
Estimation Algorithms for Hazardous Material 

Atmospheric Transport and Dispersion 
Prediction Tools  

When only a few sensors detect hazardous materials resulting in a warning, rapid 
provision of an estimate of the source location, time of release, and amount of released 
material is useful.  Such an estimate can help refine predictions of the area affected by the 
release and can support near-term follow-on actions to investigate the cause and nature of 
the release.  In some cases, refined predictions resulting from such source term estimation 
(STE) can support tactical decisions (e.g., which roads to travel on and which to avoid).  
For longer range situations (tens of kilometers), accurate estimates of source location can 
facilitate improved hazard-area predictions to better support warnings and possible 
evacuation, advocate the use of efficient mission-oriented protective posture gear, or 
perhaps enhance medical response.  The Joint Effects Model (JEM), under acquisition 
through the Joint Program Office for Chemical and Biological Defense, is the DoD-wide 
transport and dispersion model intended to satisfy DoD requirements for chemical, 
biological, radiological, and nuclear (CBRN) hazard predictions and consequence 
assessment.  The future JEM release (JEM 2.0) has an STE requirement that is yet to be 
satisfied.  The Defense Threat Reduction Agency – Joint Science and Technology Office 
(DTRA-JSTO) has primary responsibility for science and technology development of 
JEM and is responsible for supplying JEM with this capability. 

In September 2007, DTRA conducted a short-range (~500 meters), highly 
instrumented atmospheric transport and dispersion test at the U.S. Army’s Dugway 
Proving Ground (DPG) [1].  This test, referred to as Fusing Sensor Information from 
Observing Networks (FUSION) Field Trial 2007 (FFT 07), was designed to collect data 
to support further development of prototype algorithms.  FFT 07 was sponsored by 
DTRA-JSTO for Chemical and Biological Defense (CBD) and was conceived of and 
planned within the Technical Panel 9 for Hazard Assessment (TP9) of The Technical 
Cooperation Program Chemical, Biological, and Radiological Defense group, thus 
making this effort an international collaboration (in this case, among the United States, 
United Kingdom, Canada, and Australia).  A total of 82 trials involving a mix of 
instantaneous and continuous releases of a neutrally buoyant tracer gas (propylene) were 
conducted over a period of 2½ weeks.  Tracer gas concentrations were measured on a 
dense regular grid of samplers approximately 450 meters by 450 meters.  Figure 1 
illustrates the layout of a subset of FFT 07 instrumentation including the 100 digital 
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photo-ionization detectors (digiPIDs) that were used to sample propylene concentration at 
50 Hz and the locations of various instruments that collected meteorological 
observations.  Not shown in this schematic are 20 ultraviolet ion collector (UVIC) 
detectors positioned between the digiPIDs at lines 3 and 8. 

 

 
Blue dots denote locations of 100 digiPIDs used to sample propylene concentrations at 
50 Hz, small red dots denote locations of 40 Portable Weather Information and Display 
Systems (PWIDs) used to collect detailed surface meteorology, green dots denote 
locations of three 32-meter towers that carried additional meteorological instrumenta-
tion, large red dot denotes location of SAMS 11 meteorological weather station, and 
the diamond and triangle at the top denote location of mini-sodar and 924 MHz wind 
profiler. 

Figure 1.  Schematic Lay-Down of the Subset of Instrumentation  
Used during FFT 07 Field Trials 

 
With respect to STE algorithm development, there were several reasons for 

conducting FFT 07.  First, the field trial experiment was intended to provide a set of data 
that STE algorithm developers could use to improve their algorithms.  Next, the collected 
information could be used to assist in identifying strengths and weaknesses of different 
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modeling approaches chosen by developers.1  Finally, the assessment of STE algorithms 
using data collected during FFT 07 was meant to help DoD identify the current state of 
the STE algorithms in general (the “state of the art”).  

A comparative investigation of STE algorithms based on FFT 07 data began in late 
2008.  Appendix B shows the sequence of events that were part of this investigation and 
preceded this report.  The general method of this research was to first provide 
participating developers with a subset of sensor data that was collected on selected FFT 
07 trials.  Next, developers provided “blind” predictions (e.g., algorithm developers did 
not know which physical trial corresponded to a particular case for which they were 
providing predictions) that were compared to parameters of the actual release.  This 
investigation consisted of 104 individual cases of sensor data constructed from a subset 
of the available digiPID data that were distributed in September 2008.  Table 1 list the 
composition of the cases.  These cases included continuous streams of concentration data 
(1 Hz) for ingestion by STE algorithms.   

 
Table 1.  Composition of Cases Distributed to STE  

Algorithm Developers to Provide Predictions 

Condition All Trials Single Double Triple Quad 

None 104 40 40 16 8 
Puff 52 20 20 8 4 
Cont 52 20 20 8 4 
Daytime 52 20 20 8 4 
Nighttime 52 20 20 8 4 
Daytime/Puff 26 10 10 4 2 
Daytime/Cont 26 10 10 4 2 
Nighttime/Puff 26 10 10 4 2 
Nighttime/Cont 26 10 10 4 2 

 
This evaluation consisted of cases that equally sampled parameters that were 

expected to most significantly affect the quality of STE predictions.  These parameters 
included the time of day of the tracer release (day or night), the type of tracer release 
(continuous or instantaneous – sometimes referred as “puff”), and the number of sensors 
reporting data (4 or 16).  To provide some realism with respect to meteorological inputs, 
for some cases, developers were provided with surface wind velocity observations and a 
vertical wind velocity profile from sites up to 2 km removed from the tracer releases and 
                                                           

1 This report does not deal with identifying strengths and weaknesses of individual algorithms and model-
ing approaches.  It is left to individual STE algorithm developers to evaluate their algorithms.  We ex-
erted significant efforts in providing detailed (quantitative) feedback to STE algorithm developers in the 
forms of recurrent briefings and developer feedback packages, the contents of which are described in 
Appendix D. 
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sampler grid, instead of the more detailed meteorological observations that were made at 
the center location of the sampler grid.  An additional sampled parameter, which could 
affect the quality of STE predictions, was the number of sources (single, double, triple, or 
quad).  In cases of multiple sources, all individual sources were synchronized together 
(e.g., all air cannons were fired simultaneously for instantaneous releases, and all valves 
were tuned on/off at the same time for continuous releases).  FFT 07 individual puff trials 
involved multiple (up to 10) realizations.  These puffs were released by firing air cannons 
every few minutes resulting in “trains of puffs” periodically traversing the digiPID grid.  
Hence, for puff releases, some distributed cases included a single realization of the 
puff(s), but some of the distributed cases included multiple (up to 10) realizations.  The 
full structure of the distributed cases including methodology to create individual cases is 
given in References 2 and 3. 

A total of 8 different STE algorithm developers participated in this exercise.  A total 
of 14 full and partial sets of predictions were received with some exercise participants 
providing multiple sets of predictions based on different algorithms that they have been 
developing.  We note that not all algorithm developers submitted predictions for all 104 
cases.  Some algorithms were not capable of predicting certain types of the considered 
releases (e.g., instantaneous or continuous).2  Some model developers selectively limited 
their predictions to cases when high numbers of simulated sensors (e.g., 16) were 
provided or, because of funding and timing constraints, limited their set of predictions to 
either the first “53” or some “semi-random” subset of the cases.  Table 2 depicts the 
organizations that participated in the evaluation together with the composition of 
predicted cases that they provided.   
  

                                                           

2 In this case, algorithm developers tried to selectively prescreen the tracer information to ascertain 
whether a particular release fell within a selected class. 
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Table 2.  Organizations That Participated in the Evaluation and  
Composition of the Prediction Sets Received 

Organization Total Cont Puff Daytime Nighttime Single Double Triple Quad 

Aerodyne 104 52 52 52 52 40 40 16 8 
Boise-State 33 14 19 21 12 13 13 4 3 
Buffalo/GA 104 52 52 52 52 40 40 16 8 
Buffalo/SA 70 34 36 34 36 26 26 12 6 
DSTL 35 5 30 20 15 12 14 7 2 
ENSCO/Set 1 102 51 51 50 52 39 39 16 8 
ENSCO/Set 2 104 52 52 52 52 40 40 16 8 
ENSCO/Set 3 42 24 18 19 23 13 15 10 4 
NCAR/ 
Variational 38 3 35 20 18 16 14 4 4 

NCAR/Phase I 38 3 35 20 18 16 14 4 4 
Sage-Mgt 104 52 52 52 52 40 40 16 8 
PSU/Gaussian 50 26 24 25 25 18 20 8 4 
PSU/SCIPUFF 50 26 24 25 25 18 20 8 4 
PSU/MEFA 35 19 16 17 18 13 16 5 1 

Composition of predicted cases that were provided are broken down into several categories including 
release type, time of day, and number of sources.  The red font values denote that a full set of predictions 
was provided; blue font values denote that the predictions were provided for at least 50 percent of the 
distributed cases. 

 
Table 3 lists some basic capabilities of each of the STE algorithms including their 

ability to predict the number (e.g., single, double, triple, or quad source) and types of 
sources (e.g., continuous or instantaneous puff release).  The table also identifies the 
number of cases provided in the final set of predictions; the number of updates to, and 
replacements of, predictions provided; and a few additional comments.  Appendix C has 
short technical description of each of the algorithms that participated in this investigation. 

The goal of these evaluations was not to declare a “winning” algorithm, but rather to 
try to assess the state of the art in the area of source term estimation.  We focused our 
analysis on the evaluation of algorithm performance trends, rather than analyzing each 
individual algorithm’s performance.  The developer feedback package that was 
distributed in September 2009 provided information pertaining to performance of 
individual algorithms.  Appendix D describes the content of the developer feedback 
package and provides some sample plots.  Individual STE algorithm developers should 
find this information useful for analyzing their algorithm’s performance, perhaps finding 
areas for improvement, and eventually publishing their results.   
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Table 3.  Basic Capabilities of Each STE 

Organization 
Number of 
Sources Type 

Total 
Predicted 

Cases 
Number of Updates and 

Comments 

Aerodyne Multi Cont/Puff 104 Partial Set, Full Set 
Boise-State Single Cont/Puff 33 First 30 case, First 53 cases 
Buffalo/GA Multi Cont/Puff 104  
Buffalo/SA Mostly 

Single Cont/Puff 70  
DSTL Single Puff 35  
ENSCO/Set 1 Multi Cont/Puff 102  
ENSCO/Set 2 Single Cont 104  
ENSCO/Set 3 

Single Cont 42 
Set 3 is a subset of Set 2 that 

uses larger search box 
NCAR/Variational Single Puff 38 3 updates/replacements 
NCAR/Phase I Single Puff 38 3 updates/replacements 
Sage-Mgt Single Cont/Puff 104 3 updates/replacements 
PSU/Gaussian Single Cont/Puff 50 16 sensor cases only 
PSU/SCIPUFF Single Cont/Puff 50 16 sensor cases only 
PSU/MEFA Multi Cont/Puff 35 16 sensor cases only 
Only predicted cases that contain source term location are counted in this table.  Some algorithm developers 
provided predictions for cases that did not converge to a particular location but did estimate other source 
term parameters such as type or mass of the release.  For instance, Boise-State provided predictions for the 
first 53 cases, but only 33 of these reported a particular location. 

 
As depicted in Table 3, individual STE algorithm developers who participated in the 

evaluations have different capabilities with respect to predicting the numbers and types of 
sources.  In order to fairly compare these algorithms, we needed to define common 
metrics applicable to all algorithms.  We selected two metrics: the distance between the 
averaged predicted and averaged observed source term locations and the ratio of the 
observed to predicted release mass from all sources.  Figure 2 illustrates the distance 
metric calculation.3  From the 14 sets of STE algorithm predictions, 12 algorithms 
provided enough information to calculate the mass ratio, and all 14 provided enough data 
to calculate our distance metric. 

 

                                                           

3 Given the varying capabilities of individual algorithms with respect to their ability to predict release 
location and release mass of single/multiple source(s) combined with the actual number of source term 
locations/masses for each individual case, we decided to use this simple metric to capture high-level 
capabilities of individual algorithms.  With respect to source location, this allowed us to compare trends 
among algorithms instead of trying to define a “weighted” combined release location/mass metric 
capable of penalizing individual algorithms based on the number and masses of predicted sources.  
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The distance between the predicted and the observed location for an individual source can, of course, 
be larger or smaller than the “miss distance metric” value that corresponds to an average difference 
when more than one location is involved in the release.  

Figure 2.  Example of the Distance Metric Computation and Mass Calculation  
used to Compare Algorithm Performance for each Individual Case 

 

Comparison of Algorithms Based on Averaged Miss Distance 
Of the 104 cases distributed to STE algorithm developers, the majority of the cases 

(80) were for single-source and double-source releases – 40 cases in each group.  Hence, 
we focus our initial analysis on single- and double-source cases.  Table 4 lists the 
composition of predicted single- and double-source cases that were provided by STE 
algorithm developers.  
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Table 4.  Composition of Single and Double Source Predicted Cases  
Provided by STE Developers 

Single 

Organization Total Cont Puff 
Puff/ 
Day 

Puff/ 
Night 

Count/ 
Day 

Count/ 
Night 

Aerodyne 40 20 20 10 10 10 10 
Boise-State 13 5 8 5 3 3 2 
Buffalo/GA 40 20 20 10 10 10 10 
Buffalo/SA 26 11 15 8 7 6 5 
DSTL 12 1 11 6 5 0 1 
ENSCO/Set 1 39 19 20 10 10 9 10 
ENSCO/Set 2 40 20 20 10 10 10 10 
NCAR/Variational 24 9 15 6 9 6 3 
NCAR/Phase I 24 9 15 6 9 6 3 
Sage-Mgt 19 8 11 5 6 5 3 
PSU/Gaussian 18 10 8 4 4 5 5 
PSU/SCIPUFF 18 10 8 4 4 5 5 
PSU/MEFA 13 6 7 3 4 3 3 

Double 

Organization Total Cont Puff 
Puff/ 
Day 

Puff/ 
Night 

Cont/ 
Day 

Cont/ 
Night 

Aerodyne 40 20 20 10 10 10 10 
Boise-State 13 5 8 5 3 4 1 
Buffalo/GA 40 20 20 10 10 10 10 
Buffalo/SA 26 14 12 6 6 4 10 
DSTL 14 1 13 7 6 1 0 
ENSCO/Set 1 39 20 19 9 10 10 10 
ENSCO/Set 2 40 20 20 10 10 10 10 
NCAR/Variational 19 3 16 8 8 2 1 
NCAR/Phase I 19 3 16 8 8 2 1 
Sage-Mgt 18 11 7 2 5 4 7 
PSU/Gaussian 20 10 10 5 5 5 5 
PSU/SCIPUFF 20 10 10 5 5 5 5 
PSU/MEFA 16 10 6 4 2 5 5 

Information is broken into several categories including release type, time of day, and 
number of sources.  Red font values denote that a full set of predictions was provided; 
blue font values denote that the predictions were provided for at least 50 percent of the 
distributed cases. 
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Our expectation was that individual algorithm performance should be most affected 
by the number of sources, time of day of the release (e.g., daytime or nighttime), and type 
of the release (e.g., instantaneous or continuous).4  That yields eight combinations (e.g., 
“Single Source”/Instantaneous/Daytime). In addition, to ensure adequate sampling of 
each individual grouping (with 80/8 = 10 cases per grouping), only algorithms that 
provided predictions for at least half of the distributed cases were included in each 
individual comparison.  Figure 3 depicts algorithm performance broken down by these 
groupings in terms of the median miss distance, where the median is taken over all 
predicted cases in the subgroup. 

 

 
Algorithms had to provide predictions for at least half of the cases to be included in each category listed 
in the legend.  The first letter in the legend denotes number of sources: S – denotes a single source, D 
– denotes a double source; the second letter in the legend denotes the release type: P – denotes puff 
release, C – denotes continuous release; and the third letter denotes time of day of release: D – 
denotes a daytime release, N – denotes a nighttime release. 

Figure 3.  Median “Miss” Distance for Individual STE Algorithms  
 

Differences in performance among algorithms are generally larger than differences 
in performance among release conditions within the set of predictions of an individual 
algorithm.  Moreover, it is difficult to discern similar trends among different algorithms.  
                                                           

4 Some of the algorithms were designed to function with subsets of the cases that were distributed (e.g., 
instantaneous and/or single sources.).  In fact, several algorithm developers prescreened the available 
cases to try to select cases that corresponded to the design of their algorithm, but other developers with 
similarly limited algorithm designs decided to apply their algorithm to all cases. 
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Appendix E provides additional plots of miss distance for single and double releases 
grouped in various ways.   

Linear Regression Analysis Results 
We used stepwise and backward linear regression to examine which of the 

underlying factors – such as diurnal condition, the number of release sources, the type of 
release, and several other independent variables – had the greatest effect on the 
estimation of the mass ratio (the ratio of predicted to actual mass) or the miss distance.  

Backward regression begins with all independent variables in the regression 
equation, and then proceeds to eliminate those for which the associated sum of squares is 
insignificant.  In contrast, stepwise regression only allows independent variables into the 
regression equation if their associated sum of squares is significant and eliminates 
previously admitted variables if their effect is substantially diminished by other variables 
in the equation.  Thus, roughly speaking, stepwise regression tests each independent 
variable to determine whether it should enter the regression equation, and again, if it 
should remain in the equation after others are admitted.  Backward regression initially 
treats all variables as belonging to the equation, then eliminates those whose contribution 
is substandard [4, 5]. 

In this section we summarize results obtained using linear regression.  Further 
details of the regression analysis are provided in Appendix F. 

We chose the following independent regression variables:  

1. “Diurnal,” defined as either night or day release time  
2. “Met Num,” defined as either “close-in” met corresponding to meteorology ob-

tained at the center of the sensor grid or “operational” met, which corresponded 
to using data from meteorological stations approximately 1-2 km away  

3. “Sources,” denoting the number of sources used in the definition of a case (sin-
gle, double, triple, quad) 

4. “Sensors,” denoting the number of simulated sensors used in the definition of a 
case (4 or 16)  

5. “Puff/Real,” defined as “-1” if case is constructed from a continuous trial; “0” if 
case is constructed using single realization of a puff trial; and “1” if case is 
constructed using multiple realizations of a puff trial.5  The “Puff/Real” inde-

                                                           

5 FFT 07 individual puff trials involved multiple (up to 10) realizations.  These puffs were released by 
firing air cannons every few minutes resulting in “trains of puffs” periodically traversing the digiPID 
grid.  Hence, for puff releases, some distributed cases included a single realization of the puff(s) and 
some included multiple (up to 10) realizations.  The main idea of creating two types of releases based on 
puff trials was to exercise the STE algorithm’s ability to temporally distinguish between single/multiple 
releases.  Since this ability is only applicable to some STE algorithms, this potential analysis venue was 
left to individual STE developers. 



 

11 

pendent variable is expected to succinctly represent two distinct parameters that 
could affect quality of STE predictions: continuous versus instantaneous/puff 
releases and single versus multiple releases from the same location. 

The list of dependent regression variables includes: “Mean,” defined as the distance 
between average predicted and average observed source term locations (as described 
earlier) for the individual case as shown in Figure 2, and “Mass Ratio,” defined as the 
ratio of predicted to observed total mass of the material used to define a particular case.  

Results for stepwise and backward regressions are summarized in Tables 5 and 6 
respectively.  Each table is divided into two sections, one for each dependent variable.  
For each individual set of STE predictions, independent variables highlighted by 
regression as significant are marked by “x” and color coded to simplify viewing results. 

With respect to predicting miss distance between predicted and observed STE 
location, the regression analysis indicates: 

• The “Diurnal” (Day/Night) regression variable is not a significant variable in 
both backward and stepwise regressions.  

• The “Met Num” regression variable representing “Close-In” versus “Opera-
tional” met options is not significant in both backward and stepwise regressions 
for almost all algorithms.  The only exceptions are those submitted by ENSCO. 

• The “Sources” regression variable representing number of sources used in the 
definition of a case is a significant predictor of algorithm performance for six 
algorithms.  Sources are hence highlighted for six algorithms by stepwise regres-
sion and four algorithms by backward regression. 

• The “Sensors” regression variable representing number of sensors (4 versus 16) 
used in the definition of the case is a significant predictor of algorithm perfor-
mance for only three algorithms.  This indicates that most STE algorithms do 
not benefit from being provided with data from a larger number of sensors. 

• The “Puff Real” regression variable is a significant predictor of algorithm 
performance for two algorithms when using backward regression, and for one 
algorithm when using stepwise regression. 

With respect to the “mass ratio” dependent variable, regression analysis indicates: 

• The “Diurnal” (Day/Night), “Met Num” (Close-In/Operational MET), and “Sen-
sors” (4 versus 16) regression variables are not significant variables for most 
algorithms for both backward and stepwise regression. 

• The “Sources” independent regression variable representing the number of 
sources used in the definition of a case is a significant predictor of algorithm 
performance for seven algorithms. 

• The “Puff Real” regression variable is a significant predictor of algorithm 
performance for seven algorithms. 
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Table 5.  Table of Significant Factors for Backward Regression 

Dependent Variable: Mass Ratio 
Independent Regression Variable 

Model Diurnal Met Num Sources Sensors Puff Real 

ENSCO 3   X  X 
Buffalo SA X X X   
DSTL   X  X 
ENSCO 2   X X X 
PSU Gaussian   X  X 
PSU SCIPUFF   X   
Buffalo GA X  X  X 
ENSCO 1     X 
Aerodyne    X X 
NCAR Phase I      
NCAR Variation      
SAGE Mgt August      
Boise State      
PSU MEFA      

Dependent Variable: Mean Distance 
Independent Regression Variable 

Model Diurnal Met Num Sources Sensors Puff Real 

ENSCO 3   X X  
Buffalo SA      
DSTL   X  X 
ENSCO 2  X  X  
PSU Gaussian   X  X 
PSU SCIPUFF      
Buffalo GA      
ENSCO 1  X    
Aerodyne    X  
NCAR Phase I   X   
NCAR Variation   X   
SAGE Mgt August   X   
Boise State      
PSU MEFA      
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Table 6.  Table of Significant Factors for Stepwise Regression 

Dependent Variable: Mass Ratio 

Independent Regression Variable 

Model Diurnal Met Num Sources Sensors Puff Real 

ENSCO 3   X  X 
Buffalo SA X X X   
DSTL   X  X 
ENSCO 2   X  X 
PSU Gaussian      
PSU SCIPUFF   X   
Buffalo GA X  X   
ENSCO 1     X 
Aerodyne    X X 
NCAR Phase I      
NCAR Variation      
SAGE Mgt August      
Boise State      
PSU MEFA      

Dependent Variable: Mean Distance 

Independent Regression Variable 

Model Diurnal Met Num Sources Sensors Puff Real 

ENSCO 3   X   
Buffalo SA      
DSTL     X 
ENSCO 2      
PSU Gaussian      
PSU SCIPUFF      
Buffalo GA      
ENSCO 1  X    
Aerodyne    X  
NCAR Phase I   X   
NCAR Variation   X   
SAGE Mgt August   X   
Boise State      
PSU MEFA      

 
Early in this study, we conducted analyses of variance (ANOVA) of both the mass 

estimation and miss distance predictions with the intent of gaining insight into which of 
the many inputs to the various models had a significant effect on their outcomes.  The 
results of the ANOVA indicated that, in certain cases, two-way interactions between 
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factors (independent variables) were potentially significant.  With these results as 
motivation, we reformulated the regression equations used earlier to include second-order 
terms, such as the product of the number of sensors and the number of sources.  In certain 
cases, this required coding categorical variables, such as diurnal conditions, as scalar 
quantities (e.g., assigning the value 1 to daytime and -1 to nighttime).  Thus, instead of 
attempting to “fit” outcomes to linear functions of several variables, we attempted to 
model outcomes as second-order polynomials in several variables.  We then proceeded 
with stepwise regression and recorded the resulting adjusted R2.  Upon further 
examination of the results, we concluded that they were entirely consistent with linear 
regression results presented above.  Appendix G depicts resulting tables.  

We would like to caution that regression analysis results should serve as a guide for 
further investigation of which algorithm/variable combinations significantly influence 
predictive performance.  For instance, regression analysis does not tell if the algorithm 
performed as expected with respect to a given variable. 

Comparison of Selected Global Algorithm Performance Metrics 
In addition to using the linear regression methodology to discern trends among 

different sets of STE predictions, we devised metrics to capture some aspects of global 
algorithm performance.  As discussed earlier, for each individual case predicted by an 
STE algorithm, two measures were calculated: the distance between the average 
predicted and the average observed location of the source(s), which we will refer to as 
“miss distance”; and the ratio of total predicted mass to total released mass from all 
sources, which we will refer to as the “mass ratio.” 

To compare STE algorithm performance using the miss distance metric, we selected 
three levels of interest and then calculated the fraction of cases in which miss distance is 
less than the level of interest.  These levels of interest include: 100 meters (i.e., the miss 
distance is in the tens of meters), 250 meters (i.e., the miss distance is less than half the 
size of the sensor domain), and 500 meters (i.e., the miss distance is less than the 
approximate size of the sensor domain).  We note that even when a particular miss 
distance is less than some number d, it is quite possible that the individual distances 
between actual and predicted locations of the sources is greater or less than d, as 
demonstrated in Figure 2.  Figure 4 shows the results for these calculations at the three 
levels of interest.  For each set of STE predictions, the grouped colored bars denote the 
fraction of predictions that are less than the particular level of interest.  With respect to 
predicting miss distance, we observe the following: (1) when the miss distance is less 
than 100 meters, a wide spread is seen in algorithm performance; and (2) most algorithms 
seem to be capable of having more than 90 percent of their predictions have miss 
distances less than 500 meters (approximately the size of the tracer measurement grid of 
FFT 07). 
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Individual algorithm bars are color coded according to the legend.  Thick colored lines correspond to the 
medians of fractions for all algorithms and at the various thresholds: 0.46 (blue line) for the fraction of miss 
distances less than 100 meters, 0.79 (brown line) for the fraction of miss distances less than 250 meters, 
and 0.94 (green line) for the fraction of miss distances less than 500 meters.  Therefore, these lines 
separate algorithms into the better and worse performing halves, as measured by the given metric 
calculated over all cases for each algorithm. 

Figure 4.  Algorithm Inter-Comparison Using Averaged Miss Distance  
Fraction of Cases below 100, 200, and 500 Meters 

 
We examined the mass ratio metric for two types of statistics: (1) whether a 

particular algorithm has a tendency to over- or under-predict the total mass released from 
all sources, and (2) for any given set of predictions, what is the fraction of the cases when 
the predicted and observed masses are within a factor of 2, 5, or 10 of each other.  For 
each set of the 12 predictions that provided enough information to calculate the total 
predicted mass, Figure 5 shows the fraction of cases that were over-predicted.   
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Thick brown lines (at 0.4 and 0.6) denote limits that are used to distinguish different predictive behavior: a 
fraction below 0.4 implies an algorithm tendency to under-predict, a fraction in the range of 0.4 and 0.6 
implies about an equal number of under- and over-predicted cases, and a fraction above 0.6 implies an 
algorithm tendency to over-predict. 

Figure 5.  Total Mass Over-Prediction Fraction for the 12 STE Algorithms that Provided 
Enough Information to Calculate Total Predicted Release Mass from All Sources 

 
For each set of predictions, Figure 6 shows the fractions of cases in which the total 

observed and predicted masses are within factors of 2, 5, and 10 of each other.  With 
respect to the total predicted-to-observed mass ratio metric, we observe the following: (1) 
wide variations appear in terms of algorithm performance with respect to over- or under-
predicting masses of the releases, with some algorithms exhibiting a large number of 
cases significantly over- or under-predicted; (2) with the exception of three algorithms, 
the fraction of cases in which the predicted total source mass fell within factors of 2, 5, or 
10 of the actual total source mass varies from 0.27 to 0.48, 0.59 to 0.81, and 0.69 to 0.92, 
respectively. 
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Thick colored lines correspond to the medians of fractions for all algorithms and at the various thresholds: 
0.34 (brown line) for factor of 2, 0.62 (green line) for factor of 5, and 0.77 (blue line) for factor of 10. 

Figure 6.  Algorithm Inter-Comparison Using Observed and Predicted Mass Fractions 
within Factors of 2, 5, and 10 of Each Other 

 
We caution that these results capture global algorithm performance without any 

attempt to ensure that the compared predictions are compatible with each other.  For 
instance, these results do not take into account that some algorithms provided only partial 
predictions (i.e., not a complete set of predictions for all cases).  Some of the algorithm 
developers preferentially selected sets of predictions to submit (e.g., “Puff only” or “16 
sensors only” predictions).  

A. Discussion 
With respect to our miss distance metric, all algorithms were able to predict 

“averaged” source term locations to within 500 meters (i.e., a size comparable to the size 
of the tracer measurement grid of the FFT 07 experiment); a wide variation in the quality 
of the algorithm predictions was seen when the miss distance was on the order of tens of 
meters (i.e., less than 100 meters).  Few algorithms are able to consistently predict the 
source of a release with an accuracy of more than a few hundred meters.  We note that 
the FFT 07 sensor grid was less than 500 meters across and that the release sources were 
less than 100 meters away from the leading edge of the sensor grid. 
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With respect to predicting the total release mass, a wide variation appears in 
algorithm performance with respect to over- or under-predicting masses of the release, 
with some algorithms showing large fractions of cases that were under-predicted and 
some showing large fractions that were over-predicted.  About half of the models were 
able to predict the total mass of the source to within a factor of 10 of the actual source 
mass for about three-quarters of the cases.  When the prediction standard quality was 
raised to within a factor of 2, about half of the algorithms had this level of accuracy for 
less than one-third of the cases.  Most of the STE algorithms that were evaluated cannot 
consistently predict the total mass to within a factor of 5 of the actual mass release.  We 
would like to caution that these results are an attempt to capture global algorithm 
performance without any attempt to ensure that the compared predictions are compatible 
with each other.  For instance, as noted earlier, these results do not take into account that 
some algorithms provided only partial predictions (i.e., not a complete set of predictions 
for all cases), and some of the algorithm developers preferentially selected sets of 
predictions to submit. 

Linear regression analysis indicated that the time of the release (night versus day), 
type of meteorology provided (detailed versus sparse “operational” meteorology), and 
number of simulated sensors (4 versus 16) did not lead to significant differences in 
prediction quality for most of the STE algorithms under evaluation.  Some confirmation 
of algorithm insensitivity to variations of the input data could be discerned by careful 
examination of predictions for individual cases supplied by each individual algorithm, 
although it is more difficult to quantify trends among all algorithms by examining 
algorithm predictions of individual cases.  At first glance, this result seems to be 
counterintuitive.  For instance, one expects that quadrupling the number of sensors from 
4 to 16, or using high-frequency close-in meteorology, should necessarily lead to better 
predictions.  Also, the time of the release (e.g., daytime versus nighttime), in general, has 
a strong correlation with the atmospheric stability, which should significantly affect 
atmospheric dispersion.  Thus, it is rather unexpected that STE algorithms are capable of 
predicting source term parameters with equal skill under stable and unstable atmospheric 
conditions.  We speculate that the relatively small spatial scale of the FFT 07 digiPID 
sensor grid (approximately 450 by 450 meters) and the proximity of release locations to 
each other and to the upwind leading edge of the sensor grid are responsible for this.  For 
instance, for most single-source releases, the cross-wind extent of the plume does not 
cover more than few neighboring digiPIDs, and no significant spatial variation occurs in 
the plume over the sensor grid as the downwind distance from the release location 
increases.  Thus, changing the number of simulated sensors from 4 to 16 might not 
provide enough additional information for the STE algorithms.  

Linear regression analysis also indicated that the number of sources and type of 
release [continuous release versus single realization of instantaneous puff(s) versus 
multiple realizations of instantaneous puff(s)] are significant variables in terms of 
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predicting algorithm performance for the majority of participating algorithms.  We note 
that regression analysis itself (as used here) does not quantify the quality of the 
algorithms’ ability to predict source term parameters – it only indicates which release 
factors have an effect on the quality of the STE predictions. 

Our most significant observations and recommendations from these investigations 
are described below: 

• Source term estimation, as envisioned for chemical and biological weapon 
attacks, remains a challenge.  An initial look at state-of-the-art STE algorithms 
participating in this exercise revealed potential shortcomings with respect to 
estimating the spatial location and mass of the release.  Although most STE 
algorithms seemed capable of estimating the location of the release on a scale 
comparable to the limited size of the sensor grid used in FFT 07, and noting that 
the releases were very close to the upwind edge of the sensor grid, questions 
remain as to how well these algorithms would perform using operationally rele-
vant scenarios including sensors that are spaced farther apart from each other 
and the release location.6   

• The FFT 07 field trials appear to have limited applicability to practical 
validation of STE algorithms.  FFT 07 is the most comprehensive field trial 
conducted to provide information to further the development and assessment of 
STE algorithms – certainly a valuable and necessary source of measurements 
and observations for this goal of improving the state of the art.7  However, the 
relatively small size of the sensor grid and the closeness of the release locations 
to the upwind leading edge of the sensor grid, limit the usefulness of FFT 07 as 
the basis for any future validation of an STE algorithm for militarily relevant 
scenarios.  Moreover, our analysis revealed that certain input variations for the 
STE algorithms (such as quadrupling the number of available sensors or 
providing detailed high-resolution meteorology near the center of the sensor 
grid) did not lead to expected discernible improvements in the quality of the 
STE predictions.   This suggests that the small scale of FFT 07 – a few hundred 
meters – limited its usefulness for evaluations of even fundamental STE 
algorithm performance at larger (and for many applications, more realistic) 

                                                           

6  One could conceive of an STE algorithm that places the source at the location of the first sensor that 
detects the release.  This type of algorithm would be consistent with placing an Allied Tactical 
Publication-45 (ATP-45) warning triangle at the sensor that registers first detection.  Given the 
limitations associated with the FFT 07 field experiment (especially the scale), such an algorithm would 
perform quite comparably to the more complex STE algorithms that were investigated. 

7 The provided FFT 07 data were quite valuable to algorithm developers, especially in terms of refining 
their expectations.  For instance, several prototype algorithms did not expect that (1) some sensors have 
“noise” floors (i.e., they register some signals even when no tracer gas was present), and (2) different 
sensors have differing levels of noise.  That necessitated some developers to implement new threshold 
algorithms before supplying the provided data to their algorithms.  
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scales where atmospheric stability, the quality of meteorological inputs, and the 
amount of available sensor (i.e., “detector”) information can reasonably be 
hypothesized to influence STE algorithm performance. 

• A relatively high-fidelity, virtual, simulated environment could be useful for 
future assessments, and even independent validation activities, of STE algo-
rithms.  Of course, this recommendation rests on premise that a relatively large-
scale, realistic field trial is unaffordable (and possibly not executable in any 
case).  As computational power becomes more available and relatively cheap, 
the potential exists to use computer modeling tools to supplement field testing of 
system components.  The use of such tools holds the promise of increasing the 
efficiency of the field tests that are conducted, aiding the evaluation of results 
obtained from such tests, and reducing costs.  We recommend that simulated 
environments such as the National Center for Atmospheric Research (NCAR) 
Virtual THreat Response Emulation and Analysis Testbed (VTHREAT) model-
ing system should be considered and take central stage to supplement and extend 
field trial data.  Furthermore, if future assessment and validation efforts of STE 
modules will largely (and probably appropriately) rely on simulated environ-
ments, future laboratory measurements or field trial designs and observations 
must take this into account.  That is, we recommend a holistic approach to 
designing the strategy by which simulated environments and field trials (or 
laboratory tests) are used to further the assessment and validation of STE mod-
ules.  Such an approach should ensure future activities are complementary and 
should especially seek synergistic activities (e.g., field trial or laboratory obser-
vations that support increased confidence in aspects of the virtual environment 
that are critical to its use when applied to STE algorithm assessment). 
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Appendix A 
Abbreviation 

AIMS Aerodyne Inverse Modeling System 
AMS American Meteorological Society 
ANOVA analysis of variance 
ARI Aerodyne Research, Inc. 
ATD atmospheric transport and dispersion 
ATP-45 Allied Tactical Publication-45 
 
BIC Bayesian Information Criterion 
 
CB chemical and biological 
CBD Chemical and Biological Defense 
CBRN chemical, biological, radiological, and nuclear  
CONOPS Concept of operations 
 
digiPID Digital Photoionization Detector 
DoD Department of Defense 
DPG Dugway Proving Ground 
DSTL Defense Science and Technology Laboratory (United 
Kingdom) 
DTRA Defense Threat Reduction Agency 
 
FBT Forward-Backward Trajectory 
FFT Fusion Field Trial 
FFT 07 Fusing Sensor Information from Observing Networks 
Field Trial 2007 
4DVar Four dimensional variational 
FUSION Fusing Sensor Information from Observing Networks  
 
GA genetic algorithm 
GA-Var Genetic Algorithm variational 
GMU George Mason University 
 
H-LEPM Hybrid-Langrangian-Eurelrian Model 
 
IDA Institute for Defense Analyses 
JEM Joint Effects Model 
JPO Joint Program Office 
JSTO Joint Science and Technology Office 
JSTO-CBD JSTO for Chemical and Biological Defense  
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kg kilograms 
km kilometers 
 
LR Linear Regression 
LR-sub Linear Regression-subset 
 
m meters 
MCBDF Monte Carlo Bayesian Data Fusion 
MCMC Markov Chain Monte Carlo 
MEFA Multiple Enitity Field Approximation 
MO Monin-Obukhov 
MOE Measure of effectiveness 
 
NCAR National Center for Atmospheric Research 
NSWCDD Naval Surface Warfare Center Dahlgren Division 
NYC New York City 
 
PWIDS Portable Weather Information and Display System 
 
S&T Science and Technology 
SA simulated annealing 
SCIPUFF Second-Order Closure Integrated Puff 
SDF Sensor Data Fusion 
SERT Stochastic Event Reconstruction Tool 
STE Source Term Estimation  
 
TP9 Technical Panel 9 for Hazard Assessment 
T&D transport and dispersion 
TP Technical Panel 
TTCP The Technical Cooperation Program  
 
UK United Kindgdom 
UDP Urban Dispersion Program 
UVIC ultraviolet ion collector 
 
VTHREAT Virtual THreat Response Emulation and Analysis 
Testbed 
V&V Verification and Validation 
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Appendix B 
Sequence of Events 

The following is a brief summary of the sequence of events that took place before 
this document was written and that are related to the evaluations described in this 
document: 

1. IDA and DPG held a meeting at DPG in late October 2007 to discuss plans and 
to structure the proposed exercise as instructed by our DTRA sponsor.  DPG 
was responsible for running the FFT 07 field trial and subsequent data 
management and distribution.  IDA agreed to create an evaluation plan. 

2. A draft version of the evaluation plan was briefed to the FFT 07 science team in 
December 2007. 

3. A draft version of the evaluation plan was distributed to potential STE 
participants and the FFT 07 science team in January 2008. 

4. The draft evaluation plan was briefed at the annual TP9 meeting in February 
2008 with feedback requested from the STE developers. 

5. A final version of the evaluation plan, incorporating the changes agreed to 
among STE algorithm developers, the DTRA sponsor, and members of FFT 07 
science team, was distributed in May 2008. 

6. Processed DigiPID data were received at IDA in June 2008. 

7. The FFT 07 science team held a side-bar meeting during the George Mason 
University (GMU) ATD conference in July 2008. 

8. Cases of simulated sensor data were made available to the STE developers in 
September 2008. 

9. IDA initiated and attended a series of one-on-one meetings with interested STE 
algorithm developers during October and November 2008. 

10. Preliminary predictions were received at IDA in December 2008. 

11. Preliminary results of IDA analyses were submitted in December 2008 and 
presented at the annual TP9 meeting in February 2009.  With sponsor’s 
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concurrence and STE developers’ request, the deadline to submit a final set of 
predictions was extended until the end of August 2009. 

12. IDA briefed results of the preliminary analysis of STE algorithm performance, 
including prediction updates received since December 2008, at the GMU ATD 
conference in July 2009. 

13. At the end of August 2009, the exercise was officially closed with respect to 
submitting updates to predictions. 

14. Developer feedback package was prepared and distributed to STE algorithm 
developers in September 2009. 

15. IDA briefed results of the analysis at the annual TP9 meeting in September 
2009 and at the annual American Meteorological Society (AMS) meeting in 
January 2010. 
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Appendix C 
Brief Description of Source Term 

Estimation Algorithms 

This appendix is devoted to a brief description of STE algorithms that provided 
predictions for this investigation.  Eight organizations provided 14 sets of full and partial 
predictions.  Some organizations provided multiple sets corresponding to different 
algorithms they were developing, or, in one case, to an increased size of the spatial search 
box used within their algorithm. 

All STE algorithm descriptions were provided by STE algorithm developers with 
minor editing done by IDA.  We thank the developers who responded to our request to 
provide this information.  The rest of this appendix is organized into subsections 
corresponding to the individual organizations that participated in the exercise.  

A. Predictions Provided by Aerodyne Research, Inc. (denoted “Aerodyne”) 
Aerodyne Research, Inc. (ARI) developed an algorithm for source term estimation, 

called AIMS (“Aerodyne Inverse Modeling System”).  In general terms, AIMS applies a 
variational approach for source estimation: a cost function is defined that quantifies the 
mismatch between all observations and the corresponding model predictions resulting 
from a given set of trial source parameters; then, the optimal set of source parameters is 
identified as the values for which the cost function is minimized (see Equation 1).  

 
)(minarg*

)()(
ββ

ββ

β
Cost

ModelDataCost
=

−=
 (1) 

where β is the set of unknown source parameters; and β∗ is the value of β that yields 
forward model predictions that are most consistent with the data.  

Indeed, in the theoretical limit of ideal data and models, the global minimum of this 
cost function exists at the set of parameters that is most likely responsible for the 
observational data.  The two main challenges of variational approaches in practice 
involve successfully locating the (global) minimum of the cost function and dealing with 
non-ideal data and models.  The former challenge demands careful definition of the cost 
function and the use of a robust minimization algorithm.  The latter requires awareness of 
(and accounting for) artificial offsets in the location of the minimum, due to non-ideal 
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data and models.  Approaches for addressing these issues are detailed in upcoming ARI 
papers. 

AIMS takes as input all available observational data and optionally any prior 
knowledge of the source parameters.  The output is the set of source parameters that best 
describes the observations, including number of sources, emission rates, locations, and 
start and end times.  AIMS is also designed to include an a posteriori assessment of its 
solution quality, providing useful feedback on how much confidence to put in a particular 
solution and in what ways the solution quality might be improved. 

A novel feature in AIMS is the ability to integrate multiple observation types in 
order to maximize information content for source estimation.  This capability has been 
demonstrated for datasets from stationary and mobile sensors. 

References 
1. S.E. Albo, O.O. Oluwole, R.C. Miake-Lye, “The Aerodyne Inverse Modeling 

System (AIMS): Source estimation applied to the FFT 07 experiment and to 
simulated mobile sensor data,” in preparation, Atmospheric Environment, 45, p. 
6085-6092, 2011. 

2. O.O. Oluwole, S.E. Albo, R.C. Miake-Lye, Source estimation using SCIPUFF 
Tangent-Linear or Adjoint, CBD Physical Science and Technology conference 
proceedings, 2008. 

B. Predictions Provided by Boise State University (denoted “Boise State”) 
The Stochastic Event Reconstruction Tool (SERT) adopts a probabilistic approach 

that delivers results with uncertainty quantification.  The probabilistic approach is based 
on Bayesian inference with Markov Chain Monte Carlo (MCMC) sampling (Senocak et 
al., 2008). SERT is computationally fast and runs in minutes on a laptop.  The current 
version of SERT is designed to address continuous releases from a single source using a 
stochastically enhanced Gaussian plume model.  However, it was applied “as is” to puff 
and multiple source releases during the FFT 07 Phase 1 blind evaluation study.  Ideally, 
multiple source dispersion models and puff models for instantaneous releases should be 
implemented in SERT.  Novel features of the SERT code can be listed as follows: 

• Given the sensor data, empirical parameters in the dispersion model are 
estimated stochastically using the Bayesian inference engine.  The practice 
improves results tremendously and optimizes the dispersion model for each 
specific problem at hand. 

• SERT directly incorporates the sensitivity of chemical and biological (CB) 
sensors/collectors.  Trace amounts of CB agents may not be detected by a sensor 
because of its detection sensitivity governed by a concentration threshold.  



 

C-3 

Therefore, SERT does not ignore zero-hit sensors.  It incorporates the 
information into the probability model of the Bayesian inference engine by 
attaching a probability to zero sensors. 

• SERT solves the inverse problem with as many as nine distinct parameters (e.g., 
source location, strength, wind direction, wind speed, and turbulence diffusion 
parameters) simultaneously.  Results are always delivered with uncertainty 
quantification, which is an inherent feature of the Bayesian inference method. 

• SERT does not have problem-specific tunable parameters.  SERT estimates all 
the parameters in a principled way using prior probability distributions. 

• SERT code is written in JAVA.  Forward plume models for different dispersion 
scenarios can easily be added thanks to the object-oriented software design. 

References 
1. Senocak, I., N.W. Hengartner, M. Short, B. Daniel, “Stochastic event 

reconstruction of atmospheric contaminant dispersion using Bayesian 
inference,” Atmospheric Environment, Vol. 42, 7718-7727, 2008. 

C. Predictions Provided by University AT Buffalo (denoted “Buffalo/GA” 
and “Buffalo/SA”) 
Data collected during FFT 07 were used for developing STE algorithms for 

atmospheric chemical dispersion.  Heuristic approaches such as simulated annealing (SA) 
and genetic algorithms (GA) are used.  The developed STE algorithms provide the best 
estimates of the source locations, source type (continuous/single puff/train of puffs), 
source strengths, number of sources, release start time, and end time.  

Second-Order Closure Integrated Puff (SCIPUFF) is used as the predictive model 
for the atmospheric dispersion process.  The source parameters are estimated by 
minimizing the cost function, which is the sum of the squared errors between model 
predictions and the given concentration sensor data at various sensor locations for all 
times.  The STE algorithm is run in a post-processing mode, assuming a maximum of 
four sources.  The actual number of sources is selected based on the Bayesian 
Information Criterion (BIC).  

The given surface and profile wind sensor data are used to drive the predictive 
model.  The sonic data and concentration data are reduced to 10-second data using 
backward averaging.  However, turbulence calculations are not performed.  
Concentrations less than 0.001 kg/m3 are neglected in the cost function evaluation.  Some 
assumptions are made to reduce the search space during optimization.  The maximum 
source strength is fixed at 10 kg for instantaneous and 1,000 L/min for continuous 
sources.  In the case of multiple sources, all sources are assumed to be released at the 
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same time and stopped at the same time.  For a train-of-puff release, the time separation 
between successive puffs is assumed to be constant and is at least 1 minute long. 

The release type is identified based on the plot of peak concentrations at various 
times.  The top few concentration peaks and their neighborhood sensors are identified.  If 
peak concentrations across this group of sensors stay above a certain concentration level 
for more than 2 minutes, then the release type is identified as continuous; if not, they are 
considered to be a puff release.  For a puff release, the number of puffs and the time 
separation between successive puff releases can be identified approximately based on the 
number of peaks and the time separation between peaks.  For a continuous release, the 
duration of release can be estimated approximately based on how long the peak 
concentration is above a certain level.  The release time is assumed to be between the first 
measurement time in the given noisy concentration data and the time corresponding to 
the first concentration peak.  Based on the wind variability, the bounds on possible source 
locations are estimated.  The input files to run SCIPUFF are then prepared, and the model 
is started with an initial guess of source locations, strengths, and release start time.  The 
minimization of the cost function is performed using the heuristic methods (SA/GA), 
assuming a maximum of four sources.  The model with the lowest value of BIC is the 
preferred one.  

For SA approach, 70 (of 104) cases are submitted for evaluation.  The optimization 
methods do not have gradient information of the SCIPUFF model.  Hence the time 
required to reach the global optimum is usually high, depending on tuning parameters: 20 
minutes assuming single source for SA (and 2 hours to evaluate for up to four sources 
and select one).  

D. Predictions Provided by Defense Science and Technology 
Laboratory, UK (Denoted “DSTL”) 
DSTL’s Monte Carlo Bayesian Data Fusion (MCBDF) algorithm is a Bayesian 

posterior probability sampling algorithm that constantly updates its inference on release 
source terms conditional upon continuously arriving data. 

A fixed-sized time window is maintained in which data are considered.  Old data are 
discarded as time advances.  This allows for real-time inference given sufficient 
computing power.  In between the arrival of data, MCMC sampling is used to propose 
and possibly accept new hypothesized releases conditional upon the existing dataset.  
Dispersion code output for each proposed release is calculated and stored in an efficient 
manner for reuse.  Upon the arrival of new data, each existing hypothesis has its weight 
multiplied by the likelihood of the data.  The combination of parameters and weights 
encodes the posterior probability distribution from which inferences can be made.  (The 
full details of the algorithm are given in the reference below.) 
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The parameter space used for the FFT 07 analysis described instantaneous point 
releases and had nine dimensions: two for the release location (release height was fixed), 
time of day of the release, mass, material (redundant in this analysis), northerly and 
easterly components of a spatially and temporally homogeneous horizontal wind vector, 
surface roughness length, and Monin-Obukhov (MO) length.  

The prior distributions used for this analysis were uniform on location within a 2-
km square centered on the sensors, uniform on time for 5 minutes before current time, 
exponential on mass with a mean of 100 kg, normal (variance 10 m2·s-2) on the wind 
components, and uniform on the log of the surface roughness and the reciprocal of the 
MO length. 

Two likelihood models were used for the FFT 07 analysis.  The concentration 
sensor model was a simple, normally distributed measurement error model.  DSTL’s 
Urban Dispersion Model was used to link the release parameter space to the 
concentration probability distribution at each measurement location and time.  The 
unobserved concentration was integrated out.  The wind measurement model used a 
bivariate normal component likelihood with a measurement covariance derived from the 
high-frequency variations. 

References 
1. P. Robins, V.E. Rapley, N. Green, “Real-time sequential inference of static 

parameters with expensive likelihood calculations,” JRSS Series C, Vol. 58, 
Issue 5, pp. 641-622, December 2009. 

E. Predictions Provided by ENSCO, Inc. (denoted “ENSCO 1,” “ENSCO 2,” 
and “ENSCO 3”) 
ENSCO offered two separate approaches to address the source term location and 

characterization challenges posed by the FFT 07 propylene release field experiment.  The 
first approach [“ENSCO 2” hereafter referred to as Linear Regression (LR) and “ENSCO 
3” hereafter referred to as Linear Regression-subset (LR-sub) datasets1] employed a 
linear regression methodology using releases from a grid of virtual sources to estimate 
source location.  The second method [“ENSCO 1” hereafter referred to as Forward-
Backward Trajectory (FBT) dataset] represents more of a holistic approach that integrates 
most components of available sensor and meteorological input data collected during FFT 
07 with extensive subject matter expertise in atmospheric signal analysis.  Neither 

                                                           

1 “ENSCO 3” set (LR-sub) of predictions extended the limited spatial search box used in the “ENSCO 2” 
(LR) set of predictions and, due to time and budget constraints, was run for a subset of Phase I cases. 
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method need be tied to a particular transport and diffusion model.  Depending on the 
preference of the user, any legitimate model could be used. 

The LR approach uses a simple transport and dispersion model to generate 
emissions from the grid of virtual sources and correlates the predicted signals to the 
observed signals across the array of reporting digiPIDs.  The linear regression model 
(Neter and Wasserman, 1974) had been applied previously in a long-range transport 
study (Masters, 1988). 

For each virtual source, each release time, the regression model takes the form of: 

 Y = b0 + b1X +e (2) 

Y = Observed concentrations (all samplers, all collection times in range of release  
 time) 

X = Model predicted concentrations 

b0 = Regression intercept term (not used) 

b1 = Regression slope term, interpreted as the release rate for the source and time 

e = Residual (error). 

The result is a series of grids of correlations and slope terms across the virtual 
source grid at each possible release time.  A set of thresholds is applied (e.g., correlation 
>0.7, slope term <1.0), which selects a subset of the space of the source and release time. 

Highly correlated source grid locations are binned by release time to determine the 
most likely location for a source or sources.  The higher the number of release times that 
correlate with a particular grid source, the more likely it is that the location is at or near a 
real source.  After all information from all virtual sources is processed, a “weighted 
centroid” is calculated to identify an actual source location.  The method appears to work 
well for single sources (burst or continuous) but currently will only identify the mean 
location of multiple sources, i.e., the centroid is likely to be near the center of a grouping 
of two or more sources.  Additional work with clustering algorithms could facilitate the 
separation of source locations when more than one source is present. 

The FBT method emphasizes the inclusion of only the most statistically significant 
points in the data stream.  The algorithm defines a statistical noise threshold above which 
a measurement is considered to be a “plume.”  By definition, such points, when 
connected to forward and/or backward trajectories, are much more likely to represent 
centerline, or near-centerline, hits that provide a very good first estimate of the azimuth 
of a source.  This is particularly true if peaks at upwind and/or downwind sensors are 
highly correlated.  The method constructs trajectories in time originating from as many 
digiPID locations as are represented by peak hits.  Given there is at least minimal 
temporal variability of the wind field (even as little as 5-10 degrees), backward 
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trajectories will intersect at or near a common point representing the location of a source.  
These analyses often readily reveal not only single sources, but the existence and location 
of multiple sources.  Until the method can be fully automated using convergence routines 
tailored to this purpose, some minor semi-subjective nudging of trajectories may be 
necessary to best place trajectories that are not quite centerline hits.  The direction of such 
adjustments is dictated by the nature of signals observed at upwind and/or downwind 
digiPIDs. 

The value of the second approach is that it requires only a subset of all data and uses 
only those points that intrinsically provide the most complete information.  Success is not 
dependent upon brute force calculation, but results can be improved by using a transport 
and dispersion model best suited for the synoptic situation and scale of transport.  
Principally, this method was conceived to offer the best opportunity to identify source 
locations with the premise that no transport model, regardless of sophistication, is of 
much use if the source(s) is/are determined to be in the wrong location(s). 

References 
1. Masters, S., Source identification using meteorological and statistical modeling, 

Preprints 10th Joint Conf. on the Applications of Air Pollution Meteorology 
with A&WMA, 11-16 January 1998, Phoenix, AZ, 1998. 

2. Neter, J. and W. Wasserman, Applied Linear Statistical Models, Homewood, IL, 
Irwin, 1974. 

F. Predictions Provided by NCAR (denoted “NCAR Variational” and “NCAR 
Phase I”) 
NCAR, under DTRA JSTO sponsorship, is one of a group of research organizations 

developing a CB sensor data fusion (SDF) algorithm package.  This algorithm is required 
to estimate source term characteristics and provide a refined downwind hazard prediction, 
based on available CB and meteorological sensor measurements.  

This algorithm uses variational data assimilation techniques in conjunction with a 
Gaussian puff dispersion model and an inverse plume modeling method to better 
characterize the source parameters and improve the accuracy of the subsequent plume 
dispersion solution.  It leverages the relative strengths of the both the inverse plume 
modeling and variational approaches to address the atmospheric CB release source 
estimation problem.  The major components of this algorithm are depicted in Figure C-1.  
The algorithm consists of a pre-processing step, a technique for making a first guess for 
the source type – SCIPUFF, its corresponding STE model – a simplified Hybrid-
Lagrangian-Eulerian Plume Model (H-LEPM), its numerical adjoint, and the software 
infrastructure necessary to link them.  SCIPUFF and its STE model are used to calculate 
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a “first guess” source estimate based on the available CB and meteorological 
observations and source type estimation, denoted by “NCAR Phase I.”  The H-LEPM and 
corresponding adjoint are then used to iteratively refine the SCIPUFF-based STE 
estimate using variational data assimilation techniques.  The entire process from 
beginning to end is completely automated and requires no human intervention.  The 
algorithm is designed to be run on a laptop computer and provide a set of source 
parameters from seconds to several minutes after observations are provided to the 
algorithm.  The technique is suitable for any atmospheric transport and dispersion (T&D) 
application where concentration observation and meteorological data are available and 
one or more of the release source parameters are not known.  This methodology is 
particularly applicable for emergency response applications involving the dispersion of 
hazardous materials where a T&D solution is required as soon as possible following the 
collection of observations.   

 

 
Figure C-1.  The NCAR/Sage Management Variational STE and Hazard Refinement 

Algorithm Data Flow Design 

References 
1. P.E. Bieringer, I. Sykes, F. Vandenberghe, J. Hurst, J. Weil, G. Bieberbach, S. 

Parker and R. Cabell, Automated Source Parameter Estimation for 
Atmospheric, Transport and Dispersion Applications, Proceedings of the 13th 
International Conference on Harmonisation within Atmospheric Dispersion 
Modelling for Regulatory Purposes, Paris, France, 2010. 

G. Predictions Provided by Sage Management (denoted “Sage Mgt”) 
Sage Management’s STE algorithm uses an adjoint SCIPUFF methodology for 

estimation of source term parameters.  The adjoint release from each sensor measurement 
provides an estimate of the actual release mass at all prior upwind locations.  The search 
methodology finds the location, in time and space, where optimal consistency exists 
among the different release mass estimates from all sensors, including null observations. 
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Several model improvements were implemented during the exercise, including 
completion of the treatment of a probabilistic estimate for continuous sources and an 
adjustment to the weighting function for null sensors. 

Meteorological and sensor data were averaged with fixed averaging times, 
determined by trial and error to be appropriate for the instrumentation and travel times in 
question.  Both instantaneous and continuous source searches were performed, and the 
optimum estimate was determined from the best forward predictions using an objective 
error measure. 

We note that the adjoint SCIPUFF methodology is restricted to single source 
searches, so the multiple release cases, which form the majority of the FFT 07 cases, are 
strictly beyond the capability of SCIPUFF.  Subjective examination of some of the test 
cases suggests that multiple sequential releases can sometimes be reasonably represented 
as a single continuous release, but multiple locations produce inconsistent results and 
generally force the locations estimate too far upwind.   

References 
1. Sykes, R.I., Source Estimation using Reverse Transport, presentation at 74th 

MORSS, US Air Force Academy, Colorado Springs, CO, 2005. 

2. Fry, R., R.I. Sykes, and R. Kolbe, Chemical/Biological Source 
Characterization, presentation at Science and Technology for CBIS, 
Albuquerque, NM, 2005. 

3. Sykes, R.I., Source Estimation using Sensor Data and Reverse Transport, 
presentation at Science and Technology for CBIS, Austin, TX, 2007. 

H. Predictions Provided by Penn State University (denoted “PSU 
GAUSSIAN,” “PSU SCIPUFF,” and “PSU MEFA”) 
The Penn State assimilation team uses two different primary approaches to back-

calculating source and meteorological data given field-monitored concentrations: GA-Var 
and a Multiple Entity Field Approximation (MEFA).  Although we emphasize back-
calculation of source strength, source location, release height, and time of release, 
experience has shown that the solutions are highly sensitive to errors in meteorological 
variables, so we have also back-calculated wind speed, wind direction, depth of the 
boundary layer, and stability variables. 

Genetic algorithm-variational (GA-Var) uses a real-valued GA in a similar way to 
the variational approaches to data assimilation.  It avoids the backward integration step of 
traditional four-dimensional variational (4DVar) techniques by directly optimizing the 
unknown variables using forward integration and solution evolution.  The method relies 
on the GA operations of selection, mating, and mutation to provide a robust approach that 
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is capable of finding global solutions to difficult optimization problems.  We have 
developed GA-Var over a period of years, tested it for back-calculating all source and 
meteorological variables listed above, as well as using it for sensitivity studies of how 
much data are necessary to successfully back-calculate variables in the presence of 
significant amounts of noise.  In addition, we have studied the sensitivity to sensor 
characteristics such as detection level and saturation level.  It has been applied with 
Gaussian puff, Gaussian plume, sheared plume and puff models, and SCIPUFF as models 
for the atmospheric transport and dispersion (ATD).  The prediction set denoted “PSU 
GAUSSIAN” uses Gaussian puff and plume models for ATD, and the prediction set 
denoted “PSU SCIPUFF” uses SCIPUFF for ATD. 

The second method developed at Penn State is the MEFA technique, although the 
current implementation is for a single entity.  It is envisioned as being appropriate for 
cases where the dispersing eddies are on the scale of the size of the puff or larger, such as 
in the immediate vicinity of the release.  For MEFA, the STE is accomplished by 
analyzing the evolution of an entity quantity that describes the contaminant distribution, 
that is, the plume/puff spread.  For an instantaneous release, a strictly Lagrangian 
approach is used with the source information being found by inverting a simple set of 
equations.  In contrast, the formulation for a continuous release cannot adopt this strictly 
Lagrangian approach because a steady flow of contaminants renders the problem 
statistically stationary.  Therefore, the concentration data are averaged in time, and a 
hybrid Lagrangian/Eulerian framework is used to analyze the average entity state.  It is 
shown that these entity frameworks are suitable to ascertain source information for a 
contaminant for dense and sparse sensor grids.  An advantage of these algorithms is that 
no meteorological input is required.  Both algorithms were applied to the release and the 
one with the best prediction used to report the results.  The prediction set denoted “PSU 
MEFA” is based on this method. 

References 
1. Annunzio, A.J., G.S. Young, and S.E. Haupt, “Combining Methods from Entity 

and Field Frameworks to Determine the Source Information for a Contaminant,” 
submitted to Atmospheric Environment, 2010. 

2 Long, K.J., S.E. Haupt, and G.S. Young, “Assessing Sensitivity of Source Term 
Estimation,” Atmospheric Environment, 44, 1558-1567, 2010. 

3. Haupt, S.E., G.S. Young, and C.T. Allen, “A Genetic Algorithm Method to 
Assimilate Sensor Data for a Toxic Contaminant Release,” Journal of 
Computers, 2, 85-93, 2007. 
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4. Allen, C.T., G.S. Young, and S.E. Haupt, “Improving Pollutant Source 
Characterization by Optimizing Meteorological Data with a Genetic 
Algorithm,” Atmospheric Environment, 41, 2283-2289, 2007. 

5. Haupt, S.E. G.S. Young, and C.T. Allen, “Validation Of A Receptor/Dispersion 
Model Coupled With A Genetic Algorithm,” Journal of Applied Meteorology, 
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Appendix D 
Developer Feedback Package Description 

The following charts are from the “Directory-Content-and-Keys-to-Charts.ppt” 
briefing that describes the contents of the developer feedback package distributed to STE 
developers in September 2009.  The developer feedback package contained a root 
directory and eight main subdirectories corresponding to individual organizations that 
participated in the evaluation.  It contains 1,199 files and 16 folders and occupies 60 MB 
of disk space.  
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Summary

• This appendix describes directory structure and contents of the 
“Feedback to Developers Package” for Phase I of STE 
evaluation.

• It also describes some keys to provided charts.

 

 

Root Directory Contents

• At the present, the root directory contains five files and a number of 
subdirectories for each individual organization that submitted 
predictions to IDA.

– Directory-Contents-and-Keys-to-Charts.ppt is this file.
– Independent_Variable.xls is an Excel file that contains selected 

information about actual cases that comprised Phase I. We’re planning 
to use it for the regression analysis.

» Most of the columns are self-explanatory. 
» Column “# of Puff Realiz > 1” is derived from “# of Realizations” column and 

is used to distinguish puff cases that have multiple realizations.
• -1: denotes that the case is based on continuous trial.
• 0: denotes that a single realization of puff(s) were used in the case.
• 1: denotes that more than one realizations of puff(s) were used in the case.
• Sample is shown later.

– Basic_Intercomparison.{csv, xls, ppt} are files that provide basic model 
comparisons.

» Basic_Itercomparison.csv file is a data file that was imported into 
Basic_Intercomparison.xls file.

» Basic_Intercomparison.xls file contains a number of different charts in separate 
worksheets that compare model performance.

» Basic_Intercomparison.ppt file contains sequence of charts from 
Basic_Intercomparison.xls file.
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Individual Participant Directory

• Each individual participant in Phase I directory contains a single 
subdirectory and a number of individual files.

– Individual_Case_csv subdirectory contains a number of csv files that 
provide all actual and predicted information for individual cases including 
location, mass, duration, and start time.

» Single file for each predicted case submitted to us.
» Sample file shown later.

– Location_Plots_{Developer}_{Pred Set}.pdf is a pdf file containing a series 
of plots with a single plot for each submitted case showing actual and 
predicted locations, distance metric, total actual and predicted massed, 
and maximum concentration color-coded digiPIDs that were used to 
define each case.

» Sample plot is shown later.
– Selected_Plots_{Developer}_{Pred Set}.pdf is a pdf file containing a series 

of plots that congregate cases according to some selected criteria. It plots 
all actual and predicted source term locations and provides number of 
statistics in the legend.

» Sample plot is shown later.

 

 

Individual Participant Directory (Cont’d)

– Predicted_Locations_Mass_Stat_{Developer}_{Pred Set}.xls is an Excel file that 
provides a number of charts comparing a particular set of predictions in terms of a 
select subset of conditions.

» Primary conditions include “4 vs .16,” “Operational vs. Close-In Met,” “Number of Sources,” 
“Day vs. Night.”

• Secondary conditions are varied.
» Both “total” mass and “Average Distance” metrics are used.
» Sample chart is shown later.

– Predicted_Locations_Stat_dump_{Developer}_{Pred Set}.csv is an ASCII file that 
provides statistics for individual algorithm performance based on a large set of 
conditions.

» Both total mass and “averaged distance” metrics are provided.
• For “total mass” statistic “Mean A_Mass” and “Median A_Mass” denotes actual release values and 

“Mean P_Mass” and “Median P_Mass” denotes predicted values.
» Both “mean” and “median” are provided.
» Small subset of this file is used to create charts in the Excel file described in the previous 

bullet.
» Sample file is shown later.

– Actual_vs_Observed_Release_Type_Comparison_{Developer}_{Pred Set}.csv is an 
ASCII file used for debugging purposes. We decided to include it here since we 
expect that some developers might find it useful. It provides a single Worksheet with 
limited source term information for each individual case (both actual and predicted).

» Individual csv files inside Individual_Cases_csv subdirectory contain more information.
» Provided information includes release duration, release type, number of locations, and 

number of realizations at each location.
» Sample file is shown later.
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Individual Participant Directory (Cont’d)

– Dependent_Variables_{Developer}_{Pred Set}.csv is an ASCII file that 
contains “Distance” metrics and total predicted mass for each set of 
individual predictions. We’re planning to use it for the regression analysis.

» Sample file is shown later.

– Triple_Bar_Chart_*_{Developer}_{Pred Set}_Comparable.png are four 
bar-charts that were distributed earlier. The description and samples of 
these bar charts are shown later in this appendix.

 

 

Sample Files and Charts
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Independent_Variable.xls

Denotes if “4 sensor” case is a 
subset of “16 sensors” caseTotal Released Mass

 

 

Individual_Case_csv Subdirectory Sample
Basic_Actual_vs_Pred_STE_Info_Aerodyne_Full_Case_051.csv
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Metric  Used in the Preliminary Analysis
Sample Plot in Location_Plots_Buffalo_GA.pdf

Metric used in the 
preliminary analysis

Average observed 
source term location

Average predicted 
source term location

digiPIDS used to define 
this case with maximum 
concentration color 
coded according to the 
scale on the other side

 

 

Sample Plot in Selected_Plots_Buffalo_GA.pdf
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Sample Chart in Predicted_Locations_Mass_Stat_Aerodyne_Full.xls 
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Sample Predicted_Locations_Stat_dump_Aerodyne_Full.csv

Actual Mass Predicted Mass
Average Distance

Metric

 



 

D-8 

 

Sample Actual_vs_Observed_Release_Type_Comparison_Aerodyne_Full.csv

# of Sources # of Realizations # of Predicted
locations

# of Realizations
for location 1

Duration
for location 1
realization 1

Release Type
for location 1
realization 1

 

 

Sample Dependent_Variables_Aerodyne_Full.csv

Average Distance Metric Average Predicted Mass
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Sample Triple-Bar Charts
Note to Triple-Bar Charts

• Bottom two panels in bar charts in the next two charts are 
slightly modified from the version of the bar charts presented 
at TP9 meeting.

• Horizontal axes are divided into “blocks” corresponding to 
criteria of interest, and each case that was distributed has a 
“fixed” position within the block.

• Modified bar charts could be used for individual cases inter-
comparison between different model predictions.

– Unlike bar charts that were presented at TP9 meeting.

 

 

Typical “Distance Charts”
DSTL Predictions (Linear), All Cases

Day/Puff Day/Cont Night/Puff Night/Cont

Single 
Puff

Single 
Cont

Double 
Puff

Double 
Cont

Triple 
Puff

Triple 
Cont

Quad 
Puff

Quad 
Cont
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Typical “Distance Charts”
DSTL Predictions (Linear), Single and Double

Day/Puff Day/Cont Night/Puff Night/Cont

Day/Puff Day/Cont Night/Puff Night/Cont
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Appendix E 
Additional Plots for Miss Distance 

Intercomparison 

Figures E-1 through E-4 compare the performance of individual algorithms using 
the averaged and median miss distance metric, where the average or median is taken over 
all predicted cases in the subgroup.  Each figure consists of two parts: a) depicts daytime 
and b) depicts nighttime algorithm performance.  The light blue line shows the median of 
the “mean” distance; the purple line shows the median of the “median” distance.  Figures 
E-5 through E-8 depict the median miss distance metric, where the median is taken over 
all predicted cases in the subgroup with different breakdowns of individual subgroups for 
easier comparisons of algorithm performance. 

 

 
Figure E-1.  STE Algorithm Comparison Based On Single-Source/Instantaneous Releases 
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Figure E-2.  STE Algorithm Comparison Based On Single-Source/Continuous Releases 

 

 
Figure E-3.  STE algorithm Comparison Based on Double-Source/Instantaneous Releases 
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Figure E-4.  STE Algorithm Comparison Based on Double-Source/Continuous Releases 
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Figure E-5.  STE Algorithm Comparison Based on Single-Source Releases 

 

 
Figure E-6.  STE Algorithm Comparison Based on Double-Source Releases 
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Figure E-7.  STE Algorithm Comparison Based on Instantaneous Releases 

 

 
Figure E-8.  STE Algorithm Comparison Based on Continuous Releases 
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Appendix F 
Linear Regression  

A. Description 
This section describes the use of stepwise and backward linear regression for the 

examination of source term estimation algorithms.  In general terms, this effort was an 
attempt to determine which of the underlying factors, such as diurnal condition, number 
of release sources, type of release, and several other independent variables, had the 
greatest effect on the estimation of the mass ratio (the ratio of reported to actual mass) or 
distance.  Standard linear regression determines a set of coefficients for independent 
variables that yield the smallest sum of squares of residuals (differences between 
observed data and their linear approximation).  Stepwise and backward regression each 
perform this “least squares fit” but additionally attempt to include in the regression 
equation only those independent variables that substantially reduce this sum of squares.  
In this sense, they are more parsimonious than standard regression. 

Stepwise regression begins by selecting the independent variable that is most highly 
correlated with the dependent variable.  It performs a regression (i.e., selects a constant 
term and a coefficient that yield a “least squares fit” to the data) of this variable against 
the dependent variable.  It then selects from the remaining independent variables the one 
whose partial correlation with the dependent variable (that is, whose correlation after 
controlling for the effect of the first independent variable) is the highest.  The sum of 
squares associated with this variable is tested with a “partial F-test.”  If significant, this 
variable enters the regression equation. 

Next, after selecting this second variable, it reexamines the effect of the first 
independent variable.  That is, the first variable is treated as though it were the last 
variable to enter the regression equation.  In this role reversal, the reduction in the sum of 
squares of the residuals due to the first variable is computed.  If this reduction in the sum 
of squares is not significant (as determined by the appropriate “partial F-test”), the first 
variable is removed.  

The entire process is continued by selecting independent variables with high partial 
correlations, then treating the previously selected variables as though they were the last to 
enter the regression equation and eliminating those that do not significantly reduce the 
sum of squares of the residuals. 
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Backward regression, like stepwise, is selective in its choice of independent 
variables.  However, it differs substantially from its sister technique by treating every 
independent variable as though it were the last to enter the regression equation (in other 
words, there is no “entrance” qualification).  The contribution of each in reducing the 
sum of squares is tested sequentially (with the “partial F-test” mentioned above).  Those 
variables that fall below a prescribed standard are eliminated. 

Thus, roughly speaking, stepwise regression tests each independent variable to 
determine whether it should enter the regression equation, and again, if it should remain 
in the equation after others are admitted.  Backward regression initially treats all variables 
as belonging to the equation, then eliminates those whose contribution is substandard.  
For reference please see References. F-1 and F-2.  

B. Summary of the Results 
The results for stepwise and backward regressions are summarized in Tables F-1 

and F-2.  Each table is divided into two sections, one for each dependent variable.  Each 
section contains the proportion of variance explained by regression (adjusted R2), 
independent variables selected by backward regression, standard coefficient for that 
variable, unstandardized coefficient, and significance level.  To simplify viewing these 
tables, the colored background in the table entries is coded according to which 
independent variable is called by the particular significant factor.  All computations were 
performed using SPSS 15.0 [F-3] with a removal criterion of 10-percent significance as 
determined by the appropriate partial F-test. 

The regression outcomes were ranked in decreasing order of their respective 
adjusted R2.  It is equal to the proportion of the variance in the observed data that can be 
“explained” by regression, modified by the number of independent variables [F-2].  The 
adjusted R2, which determined the ordering, takes into account the number of variables in 
the model and is equal to 1 − (1 − 𝑅2) (𝑛 − 1) (𝑛 − 𝑝 − 1)⁄ , where p is the number of 
independent variables in regression equation and n is the number of observations.  The 
point of using the adjusted R2 is to force models to be economical by penalizing 
excessive numbers of independent variables.  This is in contrast to the (unadjusted) R2, 
which increases with the number of independent variables. 
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Table F-1.  Table of Significant Factors for Backward Regression 

 
 

Table F-2.  Table of Significant Factors for Stepwise Regression 

 

 model dependent R2 significant factor significant factor significant factor
ENSCO 3 Mass Ratio 0.379 Puff Real (0.51, 2.49. 0) Sources (-0.447, -1.9, 0.001)

Buffalo SA Mass Ratio 0.273 Sources (-0.348, -0.723, 0.002) Met Num (0.235, 0.632, 0.031) Diurnal (0.231, 0.508, 0.029)
DSTL Mass Ratio 0.254 Puff Real (-0.567, -287.1, 0.001) Sources (-0.376, -75.9, 0.026)

ENSCO 2 Mass Ratio 0.221 Puff Real (0.37, 1.3, 0.0) Sources (-0.32, -0.93,0) Sensors (0.17, 0.074, 0.06)
PSA Gaussian Mass Ratio 0.209 Puff Real (0.46, 0.059, 0.01) SourceS (-0.407, -0.037, 0.02)
PSU SCIPUFF Mass Ratio 0.203 Sources (-0.5, -0.011, 0.035)

Buffalo GA Mass Ratio 0.172 Sources (-0.365, -2.376, 0) Puff Real (0.183, 1.417, 0.044) Diurnal (0.177, 1.224, 0.051)
ENSCO 1 Mass Ratio 0.15 Puff Real (0.398, 14.64, 0)

Aerodyne Mass Ratio 0.096 Puff Real (0.262, 0.852, 0.006) Sensors (-0.212, -0.089, 0.026)
NCAR Phase I Mass Ratio 0 constant

NCAR Variation Mass Ratio 0
SAGE Mgt August Mass Ratio 0

Boise State Mass Ratio NO DATA
PSU MEFA Mass Ratio NO DATA

model dependent R2 significant factor significant factor significant factor
DSTL Mean 0.67 Puff Real (-0.725, -1.105, 0) Sources (0.212,0.129, 0.056)

NCAR Phase I Mean 0.266 Sources (0.534, 0.09, 0.001)
NCAR Variation Mean 0.204 Sources (0.475, 0.09, 0.003)

ENSCO 3 Mean 0.148 Sources (-0.366, -0.031, 0.015) Sensors (0.258, 0.003, 0.08)
PSA Gaussian Mean 0.102 Sources(0.306, 0.055, 0.029) Puff Real (-0.254, -0.057, 0.069)

SAGE Mgt August Mean 0.083 Sources (0.303, 0.204, 0.002)
ENSCO 1 Mean 0.043 Met Num (0.228, 0.009, 0.021)
ENSCO 2 Mean 0.04 Sensors (-0.173, -0.002, 0.076) Met Num (0.169, 0.017, 0.083)

Aerodyne Mean 0.033 Sensors (-0.206, -0.003, 0.036)
Boise State Mean 0 constant
Buffalo GA Mean 0 constant
Buffalo SA Mean 0
PSU MEFA Mean 0 constant

PSU SCIPUFF Mean 0 constant

 model dependent R2 significant factor significant factor significant factor
ENSCO 3 Mass Ratio 0.379 Puff Real (0.51, 2.49. 0) Sources (-0.447, -1.9, 0.001)

Buffalo SA Mass Ratio 0.273 Sources (-0.348, -0.723, 0.002) Met Num (0.235, 0.632, 0.031) Diurnal (0.231, 0.508, 0.029)
DYSTL Mass Ratio 0.254 Puff Real (-0.567, -287.1, 0.001) Sources (-0.376, -75.9, 0.026)

PSU SCIPUFF Mass Ratio 0.203 Sources (-0.5, -0.011, 0.035)
ENSCO 2 Mass Ratio 0.201 Puff Real (0.37, 1.3, 0) Sources (-0.32, -0.93, 0)
ENSCO 1 Mass Ratio 0.15 Puff Real (0.398, 14.64, 0)

Buffalo GA Mass Ratio 0.125 Sources (-0.365, -2.376, 0)
Aerodyne Mass Ratio 0.096 Puff Real (0.262, 0.852, 0.006) Sensors (-0.212, -0.089, 0.026)

NCAR Phase I Mass Ratio 0
NCAR Variation Mass Ratio 0

PSU Gaussian Mass Ratio 0
SAGE Mgt August Mass Ratio 0

Boise State Mass Ratio NO DATA
PSU MEFA Mass Ratio NO DATA

model dependent R2 significant factor significant factor significant factor
DYSTL Mean 0.641 Puff Real (-0.807, -1.23, 0)

NCAR Phase I Mean 0.266 Sources (0.534, 0.09, 0.001)
NCAR Variation Mean 0.204 Sources (0.475, 0.09, 0.003)

ENSCO 3 Mean 0.101 Sources (-0.35, -0.03, 0.023)
SAGE Mgt August Mean 0.083 Sources (0.303, 0.204, 0.002)

ENSCO 1 Mean 0.043 Met Num (0.228, 0.009, 0.021)
Aerodyne Mean 0.033 Sensors (-0.206, -0.003, 0.036)

Boise State Mean 0
Buffalo GA Mean 0
Buffalo SA Mean 0
ENSCO 2 Mean 0

PSU Gaussian Mean 0
PSU MEFA Mean 0

PSU SCIPUFF Mean 0
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Two types of regression coefficients are standardized and unstandardized.  The 
former refers to the regression coefficients obtained after transforming all data so that the 
dependent variable and all the independent variables have a mean of zero and a standard 
deviation of 1.0.  In some sense, this treats all data as being on an equal footing.  The 
unstandardized coefficients are the result of performing regression without this 
transformation.  For each model listed in Tables F-1 and F-2, both types of coefficients 
appear in parentheses after each independent variable that was selected by the regression 
process.  The level of significance or, more technically, the “p-value” – that is the 
probability of the same or a more extreme outcome under the null hypothesis that this 
coefficient was zero – also appears in the parentheses after the coefficient.  Models with 
gray backgrounds in Tables F-1 and F-2 are those for which there were no data or for 
which regression was not significant. 

References 
F-1. Draper, N. and H. Smith, Applied Regression Analysis, Wiley, 1966. 
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G-1 

Appendix G 
“Cross-Term” Regression Results Tables 

Early in this study, we conducted analyses of variance (ANOVA) of both the mass 
estimation and miss distance predictions with the intent of gaining insight into which of 
the many factors that composed the various models had a significant effect on their 
outcomes.  Results of the ANOVA indicated that, in certain cases, two-way interactions 
between factors (independent variables) were significant.  With these results as 
motivation, we reformulated the regression equations used in the previous section to 
include second-order terms, such as the product of the number of sensors and the number 
of sources.  In certain cases, this required coding categorical variables, such as diurnal 
conditions, as scalar quantities (e.g., assigning the value 1 to daytime and -1 to 
nighttime).  Thus, instead of attempting to “fit” outcomes to linear functions of several 
variables, we attempted to model outcomes as second-order polynomials in several 
variables. 

We then proceeded with stepwise regression, recorded the resulting adjusted R2, and 
listed the significant variables and significant products in the tables below. 

 
Table G-1.  Stepwise Regression Results for “Mean Offset” Independent Variable 

 
 

  

Model
Dependent 

Variable
Crossed 

Adjusted R2
Linear 

Adjusted R2 Check Significant Factors Significant Factors Significant Factors
DSTL Mean Offset 0.758 0.641 ok Sources X Puff Real (-0.875, -0.434, 0.001)
NCAR Phase 1 Mean Offset 0.434 0.266 ok Sources^2 (1.18, 0.042, 0.001) Sources X Sensors (-1.05, -0.01, 0.004) Sensors^2 (0.603, 0.01, 0.027)
NCAR Variational Mean Offset 0.234 0.204 ok Sources^2 ( 0.504, 0.02, 0.001)
Ensco 3 Mean Offset 0.173 0.101 ok Sources (-1.805, -0.152, 0.014) Sources^2 (1.486, 0.026, 0.04)
Sage-Mgt Mean Offset 0.085 0.083 ok Sources^2 (0.306, 0.044, 0.002)
Ensco 1 Mean Offset 0.08 0.043 ok Met Num (0.230, 0.009, 0.018) Sensors X Diurnal (-0.216, -0.001, 0.026)
Buffalo SA Mean Offset 0.043 0 ok Puff Real X Met (-0.238, -0.062, 0.047)
Aerodyne Mean Offset 0.033 0.033 ok Sensors  (-0.206, -.003, 0.036)
Boise State Mean Offset 0 0 ok
Buffalo GA Mean Offset 0 0 ok
Ensco 2 Mean Offset 0 0 ok
PSU Gaussian Mean Offset 0 0 ok
PSU MEFA Mean Offset 0 0 ok
PSU SciPuff Mean Offset 0 0 ok
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Table G-2.  Stepwise Regression Results for “Mass Ratio” Independent Variable 

 
 

For the majority of cases, the cross-term regression results are completely consistent 
with the linear regression results presented in the main body of the report – when cross-
term factor is determined to be significant by the regression, then either (or both) of the 
two factors is/are determined to be significant by no cross-term regression.  The main 
exception for this is PSU SCIPUFF for “Mass Ratio” dependent variable.  Further 
examination of the PSU SCIPUFF predictions reveals that the algorithms performed 
rather poorly in terms of predicting the mass of the release.  This is especially true for 
releases when a high amount of material was released (e.g., continuous releases or 
multiple realizations of instantaneous releases).  Both the “Puff Real2” and the “Sources” 
independent variables have a strong correlation with the total amount of material 
released.  

Model
Dependent 

Variable
Crossed 

adjusted R2
Linear 

adjusted R2 Check Significant factor 1 Significant factor 2
ENSCO 3 Mass Ratio 0.507 0.379 ok Puff  Real X MET (-1.13, -5.52, 0.001) Sources X Puff Real ( -0.646, -1.38, 0.011)
DSTL Mass Ratio 0.475 0.254 ok Sensors X Puff Real (-0.768, -30.2, 0.001) Diurnal X Puff Real (-0.399, -192.3, 0.006)
Buffalo SA Mass Ratio 0.392 0.273 ok Sources X MET (-1.268, -1.603, 0.002) MET Num (1.096, 2.94, 0)
ENSCO 2 Mass Ratio 0.37 0.201 ok Puff Real (0.702, 2.43, 0.001) Sources X Puff Real (-0.414, -0.632, 0.02)
ENSCO 1 Mass Ratio 0.307 0.15 ok Sensors X Puff Real (0.541, 1.648, 0.001) Sensors ^2 (0.438, 0.103, 0.001)
NCAR Phase I Mass Ratio 0.269 0 ok Puff Real ^2 (-0.537, -0.396, 0.001)
PSU Gaussian Mass Ratio 0.264 0 ok Puff Real ^2 (0.528, 3.83, 0.001)
PSU SCIPUFF Mass Ratio 0.217 0.203 ok Puff Real ^2 (-0.513, -0.030, 0.029)
Buffalo GA Mass Ratio 0.171 0.125 ok Sources (-0.362,-2.35 , 0.001) Diurnal X Puff Real (-0.232, -1.68, 0.011)
Aerodyne Mass Ratio 0.096 0.096 ok Puff Real (0.262, 0.85, 0.006) Sensors^2 (-0.212, -0.004, 0.026)
NCAR Variational Mass Ratio 0 0 ok
SAGE-Mgt Mass Ratio 0 0 ok
Boise State Mass Ratio No data No data ok
PSU MEFA Mass Ratio No data No data ok

Model
Dependent 

Variable
Crossed 

adjusted R2
Linear 

adjusted R2 Check Significant factor 3 Significant factor 4
ENSCO 3 Mass Ratio 0.507 0.379 ok Sources (-0.459, -1.96, 0.001) Puff Real ^2 (0.246, 2.56, 0.040)
DSTL Mass Ratio 0.475 0.254 ok Sources X Sensors ( -0.305, -3.392, 0.034)
Buffalo SA Mass Ratio 0.392 0.273 ok Sources ( -1.090, -2.26, 0.001) Diurnal X Puff Real (-0.256, -0.668, 0.009)
ENSCO 2 Mass Ratio 0.37 0.201 ok Sources (-0.378, -1.096, 0.001) Puff Real ^2 (0.365. 2.108, 0.001)
ENSCO 1 Mass Ratio 0.307 0.15 ok Puff Real ^2 (0.299, 18.201, 0.001) Sources X Sensors (-0.293, -0.524, 0.018)
NCAR Phase I Mass Ratio 0.269 0 ok
PSU Gaussian Mass Ratio 0.264 0 ok
PSU SCIPUFF Mass Ratio 0.217 0.203 ok
Buffalo GA Mass Ratio 0.171 0.125 ok
Aerodyne Mass Ratio 0.096 0.096 ok
NCAR Variational Mass Ratio 0 0 ok
SAGE-Mgt Mass Ratio 0 0 ok
Boise State Mass Ratio No data No data ok
PSU MEFA Mass Ratio No data No data ok

Model
Dependent 

Variable
Crossed 

adjusted R2
Linear 

adjusted R2 Check Significant factor 5 Significant factor 6
ENSCO 3 Mass Ratio 0.507 0.379 ok
DSTL Mass Ratio 0.475 0.254 ok
Buffalo SA Mass Ratio 0.392 0.273 ok
ENSCO 2 Mass Ratio 0.37 0.201 ok Diurnal X Puff Real (-0.229, -0.745, 0.14) Sensors ^2 (0.213, 0.005, 0.009)
ENSCO 1 Mass Ratio 0.307 0.15 ok
NCAR Phase I Mass Ratio 0.269 0 ok
PSU Gaussian Mass Ratio 0.264 0 ok
PSU SCIPUFF Mass Ratio 0.217 0.203 ok
Buffalo GA Mass Ratio 0.171 0.125 ok
Aerodyne Mass Ratio 0.096 0.096 ok
NCAR Variational Mass Ratio 0 0 ok
SAGE-Mgt Mass Ratio 0 0 ok
Boise State Mass Ratio No data No data ok
PSU MEFA Mass Ratio No data No data ok
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Appendix H 
Task Order Extract 

(with most pertinent section in red font) 

DC-1-2607 
 
TITLE: Support for DTRA in the Validation Analysis of Hazardous Material 

Assessment Models 

This task order is for work being performed by the Institute for Defense Analyses 
(IDA) under Contract Number W91WAW-09-C-0003 (see paragraph 9e) for the Defense 
Threat Reduction Agency (DTRA).   

1. BACKGROUND: 

The DTRA/Joint Science and Technology Office (JSTO) Verification and Validation (V&V) 
Program represents ongoing activities performed in parallel with development of all 
predictive codes in support of hazardous material transport and dispersion prediction.  One 
element of V&V is to perform code-on-code comparisons.  In this strategy, each code 
receives the same input.  In this manner, differences in the output predictions can lead to the 
identification of software bugs, or help to assess technical strengths and weaknesses of 
component algorithms within each code.  In addition, a certain amount of credibility for both 
models is achieved when their predictions agree.  When the inputs are simple, such as for 
fixed winds and simple terrain, the predictions tend to be dominated by the dispersion 
algorithms.  Comparisons at this level of complexity are important to establish fundamental 
dispersion algorithm veracity, and to help discover software bugs.  As more complex terrain, 
urban landscapes, and weather are included as inputs, the number of physical processes 
responsible for transport and dispersion increases and the predictions become the result of 
many interdependent algorithm calculations. 

It is very difficult to separate meteorological uncertainty from the transport and dispersion 
model accuracy when comparing predictions to field-trial validation quality or real-world 
data.  The validation challenge is to assess whether a model performs well over different 
field trials, and ultimately reflects real-world phenomena.  Some codes perform better under 
certain conditions and specific scenarios.  Hazard prediction models are generally developed 
for a range of user communities and applications.  Each user community has a different set 
of requirements.  Thus, the corresponding hazard models tend to be optimized for specific 
applications.  The process of validating a model should be couched in terms of end-user 
requirements, where feasible. 
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Several aspects of hazard prediction modeling are the subject of current 
improvement programs: 

1. Algorithms to estimate source term parameters (e.g., location, time, and amount) from 
sparse observations are also being developed.  Such “sensor data fusion” tools are 
expected to improve hazard predictions in scenarios where the release is covert or 
accidental.  Field experiments have been conducted, and are being designed, to aid in 
the evaluation of urban (including within a building) and sensor data fusion models.  
These evaluations are crucial to the overall management of these programs. 

2. Because of prohibitive cost of field trials, there is a program to develop realistic 
synthetic environments that would allow virtual testing and validation of CBRN 
sensors and models. These virtual environments could also be used for CONOPS 
development. Different sub-modules of these simulators should account for all 
potential environmental aspects that are needed for satisfactory validation of sensors 
and models including meteorology, atmospheric backgrounds, and simulated threat. 
Since these complex systems purport to simulate “reality”, a rigorous validation of 
subcomponents is needed. 

3. Complexities associated with the urban environment are being addressed via an urban 
transport and dispersion program.  Codes varying from empirical (wind tunnel-based) 
to computational fluid dynamics-based are being considered to address the complex 
flows associated with an urban environment.  As they become mature (and validated), 
tools to address the infiltration, exfiltration, and flow within buildings and other 
complex structures are also being considered for inclusion within hazard prediction 
models. 

2. OBJECTIVE:  

IDA will conduct independent analyses and special studies associated with 
verification, validation, and evaluation of the suite of models associated with the Hazard 
Assessment.  IDA will support development of user-oriented performance MOEs using 
field trial data sets and will coordinate scenario definition and arbitration for code-on-
code V&V activities. 

The objectives of these analysis and coordination are (1) to ensure that a consistent 
analysis approach is used when comparing model predictions, and to assist DTRA in the 
implementation of code-on-code analysis, comparisons, and interpretation; and (2) to 
define measures of effectiveness in terms of user-specific objectives and applications. 

The scope of this effort may be expanded to other programs as directed by DTRA. 

3. STATEMENT OF WORK:  

As required by DTRA technical representatives, IDA will perform the following 
tasks:  
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Sensor Data Fusion (SDF) Related Studies.  IDA will provide technical and 
analytical support associated with the initial incorporation of SDF algorithms into hazard 
prediction tools and products.  In order to support credible quantitative assessments of 
this emerging technology area, new analytical techniques and procedures/protocols are 
required.  IDA will conduct independent comparative studies of different SDF algorithms 
using the data collected during Fusion Field Trial 2007 (FFT 07). Phase I of this 
investigation included 104 cases created using FFT 07 field trial data were distributed to 
eight organizations in September, 2008. Last set of predictions were received in August, 
2009 when Phase I of the exercise was “officially” closed. FY10 work will include 
analysis and inter-comparison of the fourteen sets of predictions that were provided by 
different STE algorithm developers with results summarized in IDA document expected 
in spring FY10. Additionally, a Phase II of the exercises is planned to commence in 
FY10. IDA will be responsible for preparation of test cases for which predictions will be 
sought, overall coordination among exercise participants and final analysis and 
adjudication of the results.  

VTHREAT Validation Analyses. As directed by the sponsor, IDA will assist with 
the validation of the VTHREAT synthetic environment being developed by the National 
Center for Atmospheric Research (NCAR). This work will be performed in close 
coordination and collaboration with the developer of VTHREAT. In FY09, a preliminary 
analysis using limited data supplied to IDA by NCAR was performed to test 
methodology and initial results were briefed to NCAR and sponsor. We’re planning to 
expand this effort in FY10 to include: a) additional data supplied by NCAR and b) timely 
feedback provided back to NCAR so that additional improvements could be implemented 
in VTHREAT.  

Building Interior T&D Model Validation. JEM Increment 3 includes a requirement 
to include building interior T&D. IDA in coordination with NSWCDD will provide 
support to validation of building interior T&D modeling to be included in JEM. This 
work could involve either comparison of T&D models against available field trial data or 
code-on-code comparisons. 

V&V of Urban Dispersion Modeling. Complex Urban dispersion modeling is an 
active area where T&D modeling improvements are sought. To that effect, IDA will 
continue V&V studies involving comparisons of urban T&D with field trials. IDA is 
exploring possibility of using Urban Dispersion Program (UDP) field trials that included 
two sets of tracer releases in NYC for validation of UDM and Micro-SWIFT/Micro-
SPRAY urban dispersion codes. Additionally, IDA will continue efforts supporting 
validation of the latest version of Micro-SWIFT/Micro-SPRAY with Urban 2000 and 
Joint Urban 2003 field trials data. 

Meteorological Studies Associated with FFT 07 Data. As directed by sponsor, IDA 
will conduct studies and analyses of a vast meteorological dataset collected by a dense 
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grid of PWIDS during FFT 07 Field Trials. This task will greatly benefit from an 
expected close collaboration and coordination with Meteorology Division of Dugway 
Proving Ground and DTRA meteorologists.  

a. As a part of the all of the above subtasks, IDA will communicate, via 
conference papers and/or posters, working group discussions, and IDA papers, 
the more important applications of the MOE and any progress toward the 
creation of “demonstration” validations.  In addition, IDA should create 
descriptions of its efforts, where appropriate (and approved by DTRA), that 
are suitable for publication in peer-reviewed journals.  IDA will actively 
participate in working groups (e.g., Sensor Data Fusion), Science Teams for 
potential upcoming experiments and Technical Panel 9 as directed by DTRA.   
As required, IDA will provide independent reviews (e.g., of proposals or of 
JSTO-funded programs) and may assist DTRA with international 
collaborative comparative efforts (e.g., with Israel or UK). 

4. CORE STATEMENT:  

This research is consistent with IDA’s mission in that it will support specific 
analytical requirements of the sponsor and will assist the sponsor with planning efforts.  
Accomplishment of this task order requires an organization with experience in 
operationally oriented issues from a joint and combined perspective, which IDA, a 
Federally Funded Research and Development Center, is able to provide.  It draws upon 
IDA’s core competencies in Systems Evaluations and Operational Test and Evaluation.  
Performance of this task order will benefit from and contribute to the long-term 
continuity of IDA’s research program. 
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